Sealing cannula device

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S174000, C604S164110

Reexamination Certificate

active

06210397

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a surgical penetrating instrument, and more particularly, the invention relates to a cannula device that penetrates a body cavity or blood vessel and secures the device in a proper position while forming a seal between the device and body cavity or vessel wall.
2. Brief Description of the Related Art
The use of cannulas or trocars to obtain vascular and/or body cavity access is becoming more frequently practiced to achieve less invasive surgical procedures. A dilator can be used in combination with a cannula to enter vessels and arteries. Dilators are surgical instruments which have a sharp tip or stylet which is used to puncture tissue to form an opening through a patient's body tissue. In operation, a tube or cannula surrounds the dilator and both are inserted together into the patient's body. The dilator is then removed, leaving the cannula behind to act as a smooth conduit or pathway for subsequent insertion of surgical tools, such as catheters, graspers, or surgical viewing apparatus. For access to a body cavity, a trocar may be used to insert a cannula into the body cavity. Several cannulas may be employed during surgery in order to simultaneously receive several surgical instruments: an organ may be grasped and manipulated through one cannula, or pathway, while a surgical scalpel cuts away tissue using another trocar, and still another cannula is used to guide viewing endoscopes.
Utilizing such surgical equipment avoids the need to make a large surgical incision and use retractors to spread the sides of the incision to provide access for performing various surgical procedures. As described above, cannulas allow surgeons to access the interior of the body during non-open chest surgery; it is less invasive and less traumatic for the patient. Further, recovery from non-open chest surgery is typically shorter.
However, known cannula and trocar assemblies must be fitted with some sealing mechanism to prevent leakages of gasses or bodily fluids through the incision after inserting such assembly during the surgical procedure. Moreover, the cannula has a tendency to slide in and out of the incision, particularly when the surgeon is trying to manipulate surgical equipment through the cannula tube into or out of the body cavity. Further, infections may develop at an incision site directly exposed to contaminants in the environment for extended periods of time.
One example of a sealing mechanism is disclosed in U.S. Pat. No. 5,549,565 to Ryan, et al. This trocar and trocar tube assembly includes a removable disposable sealing valve portion and an optional sealing ring mounted in a groove located between an external flange and a threaded cannula sleeve. The sealing valve portion includes a sealing mechanism, such as an O-ring, seated inside the cannula base, a slit valve, a universal washer, and a covering cap. The valve assembly prevents leakages after the trocar is removed and the trocar tube is left inserted to provide portal access to the interior of the body. Although the Ryan sealing valve assembly prevents leakages of gases or bodily fluids through the surgical incision, this assembly requires several independent components to perform the sealing function, and each component constitutes a potential point of mechanical failure and/or leakage.
A second example of a sealing mechanism is disclosed in U.S. Pat. No. 5,755,697 to Jones, et al. This catheterization device has two main embodiments: screw-type and moly-type. The screw-type device includes a trocar and subcutaneous sleeve with coarse spiraling threads on its outer surface. When the trocar is rotated, the cutting blade is screwed into the skin until an annular skin cup, or retaining ring, abuts the skin surface. The annular cup is concave, thereby creating a seal against the patient's skin. The spiraling threads on the sleeve, coated with a tissue promoting substance, provide sealing and self-securing capabilities for the device. An opposite end of the device from the trocar's cutting end includes fine spiraling threads securing a cap or external lumen connection to the catheterization device. The moly-type device is similar to the screw-type device; however, the deformed moly-type device holds the catheterization device in the skin rather than the combination of threading and skin tension utilized by the screw device. Although the device described in Jones, et al. prevents leakages through the skin puncture where the device is positioned, this catheterization device requires the application of a tissue promoting substance, such as Dacron, to the spiral threading to effectively seal the puncture. This substance may be difficult to remove or harm the skin while removing the device. Such a coating substance may also result in allergic reactions. Further, the conical shape of the subcutaneous sleeve tapers toward the trocar and offers little support to that portion of the device external to the body from any movement or jostling that may occur during a surgical procedure.
SUMMARY OF THE INVENTION
The present invention relates to a sealing cannula device which can be easily and properly inserted to seal an incision and allow access to a body cavity, blood vessel, or the like during a surgical or non-surgical procedure.
Generally speaking, the present invention provides a cannula device that can be easily and properly inserted while effectively sealing the incision by using few components and without using tissue promoting substances, adhesives, or suture lines. In accordance with one aspect of the present invention, a sealing cannula device includes a cannula sleeve having an exterior flange and tissue engaging thread. The thread forms a surface which is substantially parallel to the bottom surface of the flange. The thread terminates a certain distance from the flange such that body tissue is trapped between the flange and thread.
In accordance with another aspect of the present invention, the sealing cannula device is incorporated into a surgical instrument. The sealing cannula device includes a cannula sleeve having an exterior thread that forms a surface which is substantially parallel to the bottom surface of the surgical instrument. The thread terminates a certain distance from the flange such that body tissue is trapped between the flange and thread. By incorporating the sealing cannula device into the surgical instrument, the need to utilize an outer cannula as an intermediary connector between the sealing cannula device and the surgical instrument is removed.
In accordance with an additional aspect of the present invention, the sealing cannula device includes a cannula sleeve having a flange and at least one pivoting member. The pivoting member is rotatably secured to the cannula sleeve. A slidable member or an inflatable balloon contacts the pivoting member such that the pivoting member rotates about a hinge and forms a surface which creates a seal with the body tissue. The body tissue is trapped between the pivoting member and a bottom surface of the flange. In a different configuration, the pivoting member is rotatably secured to the slidable member. When the slidable member moves with respect to the cannula sleeve, the pivoting member moves from a first position to a second position to trap body tissue between the members and a bottom surface of the flange.
In accordance with a further aspect of the present invention, the sealing cannula device includes a cannula sleeve having a flange, a plurality of flexible arms forming an opening, and a slidable member with an outer diameter larger than the opening. By moving the slidable member with respect to the cannula sleeve, the slidable member expands the flexible arms, thereby securing the device within the surgical opening.
In accordance with yet another aspect of the present invention, the sealing cannula device includes a cannula sleeve having a flange, a first portion with a first cross-sectional area, and a second portion with a second cross-sectional area. The s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sealing cannula device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sealing cannula device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sealing cannula device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2535086

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.