Interactive electrochemical displays

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S110000, C429S124000, C429S008000, C429S090000

Reexamination Certificate

active

06285492

ABSTRACT:

TECHNICAL FIELD
The invention contemplates electrochemical displays having means of activation subject to predetermined interactions, which preferably involve elements of choice or participation. The displays are also preferably self-powered, irreversible, low-cost, formed in layers, and printable on an in-line press.
BACKGROUND
Electrochemical displays can be arranged to form predetermined graphic images or to reveal previously formed images that have been blocked from sight. Sometimes, the rate of image formation or revelation is controlled to provide a timing or other measuring function. The graphic images can take a variety of forms from a patch of color to text, patterns, or pictures.
The displays generally include two electrodes, an electrolyte, and an electronic conductor between the two electrodes. The electrolyte provides an ionically conductive pathway between the electrodes, and the conductor provides an electronically conductive pathway between the electrodes. Voltaic display cells have electrodes with different electrode potentials. Completing both the pathways (ionic and electronic) between the different electrodes triggers an electrochemical reaction that produces visible changes in the displays. Electrolytic display cells have electrodes with equal electrode potentials, but similar electrochemical reactions can be started by imposing electrical potentials across the two electrodes from external power sources.
Activation of electrolytic display cells can be controlled by single or double pole switches that interrupt the flow of current to the electrodes or that change its direction. For example, U.S. Pat. No. 4,153,345 to Duchene et al. discloses an electrolytic display cell in which a pattern of thin metal film is alternately dissolved into a liquid electrolyte and redeposited onto conductive portions of a transparent electrode. The polarity of an external power source controls whether the display undergoes dissolution or deposition. Electrolytic cells can also be connected to external power sources for monitoring the condition of external sources. For example, U.S. Pat. No. 5,418,086 to Bailey discloses an electrolytic-type battery charge indicator powered by the monitored battery. One electrode is dissolved and redeposited onto another electrode as an indication of battery usage.
Activation of voltaic cells can be controlled by interrupting either the ionically conductive pathway or the electronic conductive pathway between electrodes. For example, U.S. Pat. No. 4,894,275 to Kang et al. discloses a self-powered electrochromic timing device in which a color change boundary in an electrochromic material is advanced by a gradual dissolution of an electrode in the presence of an electrolyte. Activation is deferred by isolating or deactivating the electrolyte or by physically separating portions of the electrodes intended for electronic connection. U.S. Pat. No. 5,339,024 to Kuo et al. discloses a voltaic-type charge indicator cell connected in parallel with a main cell. One electrode is dissolved by an amount related to battery condition.
SUMMARY OF INVENTION
Our invention configures electrochemical display cells in an interactive mode to provide choices for activation or to otherwise engage a user to participate in the activation of the displays, which are preferably both self-powered and irreversible. As low-cost high-volume products, our interactive displays are particularly useful as games, including game pieces and. assemblies such as board games and collector cards. Both the electrochemical cell components and their means of activation are preferably arranged in printable layers to facilitate their in-line production and to integrate them with other printed products related to their use.
One embodiment of our invention is an interactive electrochemical display assembly having first and second electrode layers interconnected by both an ionically conductive pathway and an electronically conductive pathway. The first electrode layer temporarily obscures an underlying image from view. A plurality of switches have open states for interrupting at least one of the conductive pathways and closed states for completing portions of the same conductive pathways. The switches are closable in a pattern that triggers an electrochemical reaction that erodes the first electrode layer and reveals the underlying image.
At least one of the conductive pathways is preferably arranged as a logical network interrelating combinations of the open and closed states of the switches. For example, the electronically conductive pathway can be interrupted by two of the switches in series so that closing both switches is required to complete the electronically conductive pathway between the electrode layers. Operation of the switches requires user participation and choices that affect an outcome—the underlying image revealed.
For purposes of illustration, a game piece can be constructed from an electrochemical display cell and a logical network of switch contacts printed in layers on a main substrate. The switch contacts, which are exposed on a surface of the main substrate, interrupt an otherwise hidden electronically conductive pathway between the cell's electrodes. Bogus contacts can also be exposed on the substrate surface, which are indistinguishable from those required to activate the display cell. Accessory substrates that carry a conductive adhesive mount individually on the main substrate to close the switches. The display cell is activated to reveal a hidden message (i.e., the underlying image) after a predetermined combination of the switches has been closed.
Another embodiment of our invention is an interactive compound display assembly including a plurality of mounting pieces and a main substrate having prescribed locations for receiving the mounting pieces. Each of the mounting pieces includes at least a portion of an electrochemical display cell that undergoes an electrochemical reaction for changing between display states. The main substrate includes the remaining portions of the electrochemical display cells at the prescribed locations. Affixing one or more of the display cells to the prescribed locations on the substrate changes the display states of the cells.
The display cells include two electrode layers and an electrolyte layer. The electrolyte layer, which can take the form of an electrolytic adhesive, is preferably carried by the mounting pieces. The mounting pieces can also carry one of the electrode layers and an electronically conductive adhesive for both ionically and electronically coupling the electrode layer of the mounting pieces to a remaining electrode layer at the prescribed locations on the main substrate. The electrode layer of the mounting pieces preferably includes an opening or is transparent for viewing the changes in the display states. The electrode layer of the main substrate is preferably erodable by the electrochemical reactions that change display states and reveal an underlying image.
Alternatively, just the erodable electrode or both electrodes could be incorporated into the mounting piece. The former alternative requires both ionic and electronic interconnections with the other electrode on the main substrate. The latter alternative requires the main substrate to include a switch arm for completing the ionic or the electronic interconnection between the electrodes of the mounting piece. The underlying image preferably remains with the erodable electrode, regardless of whether the erodable electrode is incorporated into the mounting piece or the main substrate.
In yet another embodiment, the participant is responsible for completing an interactive electrochemical display. Two of three electrochemical cell layers, namely two electrode layers and one electrolyte layer, are mounted together on a common substrate and a third of the three electrochemical cell layers is available separately (e.g., supplied by the participant). One of the two electrode layers overlaps (hides) a graphic image. The two electrochemical cell layers that are mount

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Interactive electrochemical displays does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Interactive electrochemical displays, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Interactive electrochemical displays will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2534866

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.