Socket rails for stacking integrated circuit components

Electrical connectors – Preformed panel circuit arrangement – e.g. – pcb – icm – dip,... – With provision to conduct electricity from panel circuit to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C439S070000

Reexamination Certificate

active

06210175

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to electrical connectors. More particularly, it relates to a socket connector for receiving one or more semiconductor devices such as those supplied in gull wing package designs.
BACKGROUND OF THE INVENTION
Various types of semiconductor packages include external connector designs which are adaptable to fusion bonding (soldering), socketing or both. One package type which permits a high pin count and surface connection is the gull wing package. In a gull wing package, the leads splay outwardly from the package and can easily be thermally fused to the surface of a printed circuit board. The gull wing package has the advantages of high pin count or pin density, ease of assembly for surface mount applications and ease of inspection for surface mount applications. Unfortunately, it is not ideally suited for socketing.
Often it is desired to provide a semiconductor integrated circuit device part to a circuit board while permitting upgrading by connecting additional semiconductor integrated circuit devices by the user. Typically this is done with semiconductor memory, although processor enhancements and other additional circuitry are added to various circuits. Often such additions utilize common address circuit with the more basic circuit, and the circuit board is capable of addressing the additional semiconductor integrated circuit parts.
By “parts,” it is the intent to describe a packaged integrated circuit device, which is provided in a package, which may be plastic or ceramic. The part can be a hybrid integrated circuit, or any other convenient packaged semiconductor integrated circuit part. The term “integrated circuit device” is intended to describe a complete packaged device, as customarily seen in a package such as a gull wing package.
Such additional integrated circuit devices are typically socketed, so that the user need not be skilled at soldering high density parts to accomplish the upgrade. In the past, if an integrated circuit device was originally supplied in a gull wing package, a different package type had to be provided for field upgrades, since the gull wing package was not readily installed subsequent to original assembly of the circuit board.
Circuit layouts also make it convenient to stack integrated circuit devices. If an integrated circuit devices is surface mounted, it is often difficult to further mount a socket over that integrated circuit devices, although the location of that integrated circuit devices presents the desired alignment of the interconnect circuitry for connection of further parts. Placing the integrated circuit devices on the reverse side of the board would be attractive, but parts are often not available in reverse pinout configurations. Therefore a reverse board mounting must accommodate a part installed upside down.
It would be advantageous if a semiconductor part having a high pin count and designed for surface mounting could also be socketed to a board for purposes of end user installation. It would be advantageous to be able to socket such a part in such a way that its pinout alignment matched that of the original, so it would not be necessary to provide a reverse pinout part. It would be advantageous to be able to accomplish stacking of integrated circuit devices parts without limiting the ability to provide a basic configuration of a circuit board with surface mounted integrated circuit devices. In doing so, it would be advantageous if a gull wing semiconductor package could be added to a circuit board after assembly, by socketing the gull wing package to the board.
In addition, in certain types of enhancements, such as increasing memory, it is desired to be able to stack the integrated circuit devices parts. Therefore, if a basic configuration had a memory capacity of x, the end user could add semiconductor integrated circuit devices to increase the capacity by using the same or different capacity integrated circuit devices parts which use the same basic pinout arrangement.
SUMMARY OF THE INVENTION
According to the present invention, a socket is provided in which lead ends of semiconductor integrated circuits engage sidewalls of terminals on the socket, and in which the contour of the socket guides the lead ends. This design permits the socket to accept gull wing semiconductor integrated circuit devices in an inverted (“dead bug”) alignment. The ability to provide socketing of gull wing parts permits the use of parts with high pin count density to be socketed, and thereby facilitates selective upgrading and part substitution without a requirement for fusion bonding on upgrading.
In accordance with one embodiment of the invention, the socket accepts multiple integrated circuit devices in a stacked arrangement. A plurality of terminations of the multiple integrated circuit devices are connected in common, by engaging common terminals on the socket. In one configuration, at least one termination on the socket is segmented, so that at least two of the integrated circuit devices are separately signaled. In another configuration, the integrated circuit devices are provided with a variation in connection to their terminations so that different devices connected to the same terminals in the socket receive different signals. In another configuration, the devices are provided with unique addresses, so that it is possible to provide signals addressed to specific ones of several devices connected in parallel.
The invention permits the addition or modification of circuitry on a circuit board by placing the circuits in a stacked configuration. The invention further permits the use of gull wing integrated circuit devices for use in a socketed location.
One benefit of stacking parts is that this minimizes lead length of connections to the integrated circuit devices. The ability to reduce lead length provides better high frequency data transmission characteristics and results in less inductive impedance from the connection. The shorter lead lengths also reduce RF noise received by and transmitted from the circuit. The stacking also reduces the board real estate or footprint required for multiple parts. This benefit is realized by the vertical arrangement of parts and by the use of short conductor runs between commonly addressed terminals.
In many such parts, different addresses between parts can be achieved by changes to one or more pins. Therefore, it would be possible to produce parts with the same basic pinout configuration, but still allow differentiation of parts. This could be achieved, for example, by providing redundant pins and clipping individual ones of the redundant pins. This would mean that the clipped part would only respond to the cognizant address signal when it appeared at an unclipped pin.
It is possible to vertically separate parts for separate addressing. This is accomplished by providing address separation partitions. Alternatively, multiple parts can be stacked by the use of separate sockets for each part and stacking the sockets as desired.
It is possible to provide each device with an address which is unique, at least to an extent that it is possible to discriminate between devices by address. The address can then be used to separately enable or disenable individual devices.


REFERENCES:
patent: 3853382 (1974-12-01), Lezar
patent: 4116519 (1978-09-01), Grabbe et al.
patent: 4137559 (1979-01-01), Reuting
patent: 4364620 (1982-12-01), Mulholland et al.
patent: 4710134 (1987-12-01), Korsunsky
patent: 5347215 (1994-09-01), Armstrong et al.
patent: 5754408 (1998-05-01), Derouiche
patent: 3-44995 (1991-02-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Socket rails for stacking integrated circuit components does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Socket rails for stacking integrated circuit components, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Socket rails for stacking integrated circuit components will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2534653

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.