Process for glucan preparation and therapeutic uses of glucan

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S123100, C536S124000

Reexamination Certificate

active

06242594

ABSTRACT:

FIELD OF INVENTION
The present invention relates to a process for the extraction of a naturally occurring carbohydrate (glucan) from microorganisms as well as the glucan produced by this process. The invention also relates to novel therapeutic users of glucan.
BACKGROUND OF THE INVENTION
Glucan is a generic term referring to an oligo- or polysaccharide composed predominantly or wholly of the monosaccharide D-glucose. Glucans are widely distributed in nature with many thousands of forms possible as a result of the highly variable manner in which the individual glucose units can be joined (glucosidic linkages) as well as the overall steric shape of the parent molecule.
The glucan referred to in this invention typically is a linear chain of multiple glucopyranose units with a variable number of side-branches of relatively short length. The glucosidic linkages are predominantly (not less than 90%) &bgr;-1,3 type with a lower number (not greater than 10%) of &bgr;-1,6 type linkages; the &bgr;-1,3 linkages form the bulk of the backbone of the molecule, while the &bgr;-1,6 linkages occur predominantly in the side-branches. The chemical name of this form of glucan is poly-(1,3)-&bgr;-D-glucopyranosyl-(1,6)-&bgr;-D-glucopyranose. Glucan is well described molecule.
The form of glucan is found principally in the cell wall of most fungi (including yeasts and moulds) and in some bacteria. Glucan, in combination with other polysaccharides such as mannan and chitin, is responsible for the shape and mechanical strength of the cell wall. The glucan typically accounts for approximately 40% to 50% of the weight of the cell wall in these cells.
The chemical structure of fungal cell wall glucan has been studied in detail, with the following sentinel articles being incorporated herein by reference—Bacon et al (1969); Manners et al (1973).
Fungal cell wall glucans have long been used in industry, particularly the food industry, usually in a semi-purified form. Their uses have included use as stabilizers, binders, thickeners and surface active materials.
It also has been known for some forty years that fungal cell wall glucans are biologically active, exerting a number of effects on the reticuloendothelial and immune systems of animals. The outstanding biological effect in this regard is their ability to stimulate non specifically the activity of the body's primary defence cells—the macrophage and the neutrophil. This is thought to be due to receptors to &bgr;-1,3 glucan displayed on the surface of these cells (Czop and Austen. 1985). The interaction between glucan and its receptor producing such stimulatory effects as enhanced phagocytosis (Riggi and Di Luzio, 1961), increased cell size (Patchen and Lotzova, 1980), enhanced cell proliferation (Deimann and Fahimi, 1979), enhanced adherence and chemotactic activity (Niskanen et al, 1978), and production of a wide range of cytokines and leukotrienes (Sherwood et al. 1986, 1987).
The aforementioned biological responses to fungal cell wall glucan have been reported to result in a number of clinical effects including: enhanced resistance to infections with fungi (Williams et al. 1978), bacteria (Williams et al, 1983), viruses (Williams and Di Luzio, 1985), protozoa (Cook et al, 1979) following systemic application: enhanced antitumour activity following systemic application (Williams et al. 1985) or intralesional application (Mansell et al. 1975); and enhanced immune responsiveness following systemic application (Maeda and Chihara, 1973). It will be readily seen that these clinical effects are highly beneficial and important and represent an opportunity to develop novel pharmaceutics based on fungal cell wall glucans, such pharmaceutics having potentially wide application in both veterinary and human medicine.
Of the various fungal cell wall glucans tested, that from the yeast
Saccharomyces cerevisiae
has proven to be acceptable in terms of efficacy and safety as an immune stimulant in animals and humans. Hereinafter this will be referred to as
Saccharomyces cerevisiae
(“Sc”)-glucan. Predominantly or wholly &bgr;-1,3 glucans from other fungi, bacteria or plants from the Graminaceae family have been shown to be immunostimulatory in animals but compared to Sc-glucan either are not as potent or if they do have comparable or greater potency then that is usually associated with a higher level of undesirable side-effects.
Sc-glucan has been shown to be biologically active as an immune stimulant in animals in various forms. These include (a) a large molecular weight (typically greater than 3×10
6
d), water-insoluble, microparticulate form, or (b) smaller molecular weight (typically less than 500,000 d) forms which are dispersible or soluble in water. Water-solubility is described as being achieved either through cleavage of the large microparticulate glucan form to smaller molecules using processes such as enzymatic digestion or vigorous pH adjustments, or by complexing to salts such as amines, sulphates and phosphates. The principal advantage of the smaller, water-soluble form vs the larger microparticulate form is that it is safer when given by parenteral routes of administration such as intravenously. Also, it is likely that the smaller sized molecules are more bio-available on a molar basis.
To date it has neither been technically possible nor economically feasible to synthesise glucan on a commercial basis. Thus preparation of commercial quantities of &bgr;-1,3 glucan for therapeutic uses requires that it be extracted from fungi, bacteria, algae or cereal grains.
DESCRIPTION OF THE PRIOR ART
A number of different processes are described for the preparation of Sc-glucan for pharmaceutical use. A common feature of these different processes is the extraction of microparticulate glucan as the primary step; the glucan is either then used in the final therapeutic formulation in that microparticulate form or is further processed to a smaller molecular weight material (“soluble glucan”) by modification of its chemical and/or spatial structures.
(i) Microparticulate glucan
The extraction of Sc-glucan from whole yeast cells depends on the fact that the bulk of the cell wall glucan is insoluble in water, strong alkali, acid and organic solvents whereas all other cell wall components are soluble in one or more of these solutions.
The essential principles of extraction of Sc-glucan are (i) lysis of the yeast cell to allow the intact cell walls to be separated from the less dense cytoplasmic contents, and (ii) subsequent or concomitant dissolution of unwanted wall components such as other carbohydrates (glycogen, mannan, glucosamine), lipids and proteins using various combinations of water, alkali, acid and organic solvents. It is preferred in such processes that the three-dimensional matrix structure of the cell wall remains unaltered and intact as a cell wall skeleton (also known as a “cell sac”), comprised predominantly of &bgr;-(1,3)(1,6)-glucan. The cell wall skeletons characteristically are spherical, hollow structures of approximately 4 to 20 u diameter and with a molecular weight of between approximately 1,000,000 to 3,000,000 daltons and they are insoluble in water. This end-product is termed microparticulate Sc-glucan.
A number of methods of extraction of microparticulate Sc-glucan are known, although all are essentially variations of a common method. The described methods entail the following steps.
1. Contact of whole yeast cells with strong alkali solution (pH 12 to 14). This effects lysis of the cells and dissolution of most of the non-glucan components except lipids. This step is uniformly rigorous in all described processes. The contact usually is repeated two to three times using fresh batches of alkali and heat also usually is applied to speed the reaction time.
2. The cells then are exposed to acid (pH 1 to 5) with heat to effect dissolution of certain residual non-glucan components and to effect some hydrolysis of the glycosidic linkages, principally the &bgr;-1,6 linkages in the side branches and to a minor extent &bgr;-1,3 linkages

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for glucan preparation and therapeutic uses of glucan does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for glucan preparation and therapeutic uses of glucan, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for glucan preparation and therapeutic uses of glucan will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2532388

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.