Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...
Reexamination Certificate
1999-08-03
2001-07-17
Cook, Rebecca (Department: 1614)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Having -c-, wherein x is chalcogen, bonded directly to...
C514S530000, C514S880000
Reexamination Certificate
active
06262105
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to a process for stimulating the growth of mammalian hair comprising the application to mammalian skin of prostaglandin compounds, derivatives and analogues and the pharmacologically acceptable acid addition salts thereof, alone or in association with a topical pharmaceutical carrier.
More particularly, the invention is concerned with the use of prostaglandin derivatives of PGA, PGE and PGF for the stimulation of hair growth. The invention relates also to therapeutic compositions, containing an active amount of these prostaglandin derivatives, and the manufacture of such compositions.
BACKGROUND OF THE INVENTION
Dermatologists recognize many different types of hair loss, the most common by far being “alopecia” wherein human males begin losing scalp hair at the temples and on the crown of the head as they get older. While this type of hair loss is largely confined to males, hence its common name “male pattern baldness,” it is not unknown in women. Be that as it may, no known cure has yet been found despite continuing attempts to discover one.
Notwithstanding the fact that nothing heretofore has been found which is effective in preventing, yet alone reversing, male pattern baldness, a good deal is known about various types of human hair and its growth patterns on various parts of the body.
For purposes of the present invention, we need consider various types of hair, including, terminal hairs and vellus hairs and modified terminal hairs, such as seen in eye lashes and eye brows. Terminal hairs are coarse, pigmented, long hairs in which the bulb of the hair follicle is seated deep in the dermis. Vellus hairs, on the other hand, are fine, thin, non-pigmented short hairs in which the hair bulb is located superficially in the dermis. As alopecia progresses, a transition takes place in the area of approaching baldness wherein the hairs themselves are changing from the terminal to the vellus type.
Another factor that contributes to the end result is a change in the cycle of hair growth. All hair, both human and animal, passes through a life cycle that includes three phases, namely, (1) the anagen phase (2) the catagen phase and (3) the telogen phase. The anagen phase is the period of active hair growth and, insofar as scalp hair is concerned, this generally lasts from 3-5 years. The catagen phase is a short transitional phase between the anagen and telogen phases which, in the case of scalp hair, lasts only 1-2 weeks. The final phase is the telogen phase which, for all practical purposes, can be denominated a “resting phase” where all growth ceases and the hair eventually is shed preparatory to the follicle commencing to grow a new one. Scalp hair in the telogen phase is also relatively short-lived, some 3-4 months elapsing before the hair is shed and a new one begins to grow.
Under normal hair growth conditions on the scalp, approximately 88% of the hairs are in the anagen phase, only 1% in catagen and the remainder in telogen. With the onset of male pattern baldness, a successively greater proportion of the hairs are in the telogen phase with correspondingly fewer in the active growth anagen phase.
The remaining result associated with alopecia is the severe diminution of hair follicles. A bald human subject will average only about 306 follicles per square centimeter, whereas, a non-bald one in the same age group (30-90 years) will still have an average of 460 follicles per square centimeter. This amounts to a one-third reduction in hair follicles which, when added to the increased proportion of vellus hair follicles and the increased number of hair follicles in telogen, is both significant and noticeable. It is written that approximately 50% of the hairs must be shed to produce visible thinning of scalp hair. It is thus a combination of these factors: (1) transition of hairs from terminal to vellus, (2) increased number of telogen hairs—some of which have been shed, and (3) loss of hair follicles (atrophy) that produces “baldness”.
While a good deal is known about the results of male pattern baldness, very little is known about its cause. The cause is generally believed to be genetic and hormonal in origin although, as will be seen presently, the known prior art attempts to control it through hormone adjustment have been singularly unsuccessful.
One known treatment for male pattern alopecia is hair transplantation. Plugs of skin containing hair are transplanted from areas of the scalp where hair is growing to bald areas with reasonable success; however, the procedure is a costly one in addition to being time-consuming and quite painful. Furthermore, the solution is inadequate from the standpoint that it becomes a practical, if not an economic, impossibility to replace but a tiny fraction of the hair present in a normal healthy head of hair.
Other non-drug related approaches to the problem include such things as ultra-violet radiation, massage, psychiatric treatment and exercise therapy. None of these, however, has been generally accepted as being effective. Even such things as revascularization surgery and acupuncture have shown little, if any, promise.
By far, the most common approach to the problem of discovering a remedy for hair loss and male pattern alopecia has been one of drug therapy. Many types of drugs ranging from vitamins to hormones have been tried and only recently has there been any indication whatsoever of even moderate success. For instance, it was felt for a long time that since an androgenic hormone was necessary for the development of male pattern baldness, that either systemic or topical application of an antiandrogenic hormone would provide the necessary inhibiting action to keep the baldness from occurring. The theory was promising but the results were uniformly disappointing.
The androgenic hormone testosterone was known, for example, to stimulate hair growth when applied topically to the deltoid area as well as when injected into the beard and pubic regions. Even oral administration was found to result in an increased hair growth in the beard and pubic areas as well as upon the trunk and extremities. While topical application to the arm causes increased hair growth, it is ineffective on the scalp and some thinning may even result. Heavy doses of testosterone have even been known to cause male pattern alopecia.
Certain therapeutic agents have been known to induce hair growth in extensive areas of the trunk, limbs and even occasionally on the face. Such hair is of intermediate status in that it is coarser than vellus but not as coarse as terminal hair. The hair is generally quite short with a length of 3 cm. being about maximum. Once the patient ceases taking the drug, the hair reverts to whatever is normal for the particular site after six months to a year has elapsed. An example of such a drug is diphenylhydantoin which is an anticonvulsant drug widely used to control epileptic seizures. Hypertrichosis is frequently observed in epileptic children some two or three months after starting the drug and first becomes noticeable on the extensor aspects of the limbs and later on the trunk and face. The pattern is not unlike that sometimes caused by injury to the head. As for the hair, it is often shed when the drug is discontinued but may, in some circumstances, remain.
Streptomycin is another drug that has been found to produce hypertrichosis in much the same way as diphenylhydantoin when administered to children suffering from tuberculous meningitis. About the same effects were observed and the onset and reversal of the hypertrichosis in relation to the period of treatment with the antibiotic leave little question but that it was the causative agent.
Two treatments have been demonstrated as showing some promise in reversing male pattern alopecia. These treatments include the use of a microemulsion cream containing both estradiol and oxandrolone as its active ingredients and the use of organic silicon.
In addition to the foregoing, it has been reported in U.S. Pat. Nos. 4,139,619 and 4,968,812 that the compound minoxi
Christensen O'Connor Johnson & Kindness PLLC
Cook Rebecca
LandOfFree
Method of enhancing hair growth does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of enhancing hair growth, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of enhancing hair growth will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2531558