Process for controlling contamination of nucleic acid...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S810000, C435S196000, C536S023100, C536S024300, C536S024330

Reexamination Certificate

active

06287823

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to an improvement in processes which amplify nucleic acid sequences. In particular, invention is directed to a means for eliminating the products of an execution of a nucleic acid amplification process that contaminate subsequent executions of the amplification process.
One embodiment is directed to a method for preventing carryover-contamination of nucleic acid samples by eliminating the products of an execution of an oligonucleotide-dependent nucleic acid amplification process that contaminate subsequent executions of the amplification process. Such oligonucleotide-dependent nucleic acid amplification processes may include, for example, Polymerase Chain Reaction (PCR) and Ligase Chain Reaction (LCR).
The improvements of the present invention ensure that the results of an amplification process do not reflect the presence of carryover-contaminating nucleic acid template.
BACKGROUND OF THE INVENTION
The polymerase chain reaction (PCR) procedure amplifies specific nucleic acid sequences through a series of manipulations including denaturation, annealing of oligonucleotide primers, and extension of the primers with DNA polymerase (Mullis, K. B. et. al., U.S. Pat. Nos. 4,683,202, 4,683,195; Mullis, K. B., EP 201,184; Erlich, H., EP 50,424, EP 84,796, EP 258,017, EP 237,362; Erlich, H., U.S. Pat. No. 4,582,788; Saiki, R. et al., U.S. Pat. No. 4,683,202; Mullis, K. B. et al. Cold Spring Harbor
Symp. Quant. Biol.
51:263 (1986); Saiki, R. et al.
Science
230:1350 (1985); Saiki, R. et al.
Science
231:487 (1988); Loh, E. Y. et al.
Science
243:217 (1988)). These steps can be repeated many times, potentially resulting in large amplification of the number of copies of the original specific sequence. It has been shown that even a single copy of a DNA sequence can be amplified to produce hundreds of nanograms of product (Li, H. et al.
Nature
335:414 (1988)).
Other known nucleic acid amplification procedures include transcription-based amplification systems (Kwoh, D. et al.
Proc. Natl. Acad. Sci. USA
86:1173 (1989); Gingeras, T. R. et al., WO 88/10315).
Schemes based on ligation of two (or more) oligonucleotides in the presence of a nucleic acid target having the sequence of the resulting “di-oligonucleotide,” thereby amplifying the di-oligonucleotide, are also known (Wu, D. Y. and Wallace, R. B.
Genomics
4:560 (1989); Backman et al., EP 320,308; Wallace, B., EP 336,731; and Orgel, L., WO 89/09835). Such oligonucleotide-dependent amplifications are termed “Ligase Chain Reaction” (LCR).
A consequence of amplification processes, such as PCR or LCR, is that the amplification products themselves can be substrates for subsequent PCR or LCR procedures. Furthermore, because the quantities of the amplification products can be large, and because the sensitivity of PCR and LCR is so great, the dispersal of even an extremely small fraction of a reaction, such as a PCR or LCR reaction, into the laboratory area potentially can lead to contamination of later attempts to amplify other samples, thereby resulting in false positives. Extreme care must be taken to avoid carryover contamination (Kwok, S. and Higuchi, R.
Nature
339:237 (1989)); this is very inconvenient and adds significantly to the cost of doing amplifications such as PCR and LCR.
Thus a need exists for a routine, economical method of nucleic acid amplification wherein such amplification may be performed without concern as to possible carryover-contamination from previous amplifications.
The invention represents an improvement upon in vitro nucleic acid amplification procedures in general by making amplification products distinguishable from naturally occurring DNA. Accordingly, such products are rendered inactive as templates for further amplification prior to the start of the succeeding amplification reaction.
SUMMARY OF THE INVENTION
This invention relates to a method of incorporating an exo-sample nucleotide into the amplified product strands resulting from a nucleic acid amplification process. Once the product strands have been obtained and analyzed (e.g., by hybridization, Southern blot, etc.), the exo-sample strands can be selectively destroyed by acting on the incorporated exo-sample nucleotide.
Two embodiments are presented. In a first embodiment, the exo-sample nucleotide is incorporated by carrying out the amplification reaction in the presence of an excess of exo-sample nucleotide triphosphate.
In a second embodiment, the exo-sample nucleotide is incorporated by carrying out the amplification reaction in the presence of an oligonucleotide which has, as part of its sequence, one or more exo-sample nucleotides. The primer containing exo-sample nucleotide(s) can be used alone or in combination with the first embodiment, i.e., also incorporating the exo-sample nucleotide by carrying out the amplification reaction in the presence of an excess of exo-sample nucleotide triphosphate.
In a variation of the second embodiment, the exo-sample nucleotide is incorporated in at least one oligonucleotide before the amplification reaction. Preferably the exo-sample nucleotide is incorporated at or near the oligonucleotide termini. Before amplification, the oligonucleotide containing exo-sample nucleotide is substantially amplifiable. After amplification, the amplified oligonucleotide (containing exo-sample nucleotide) is substantially unamplifiable. The oligonucleotide containing exo-sample nucleotide may be made unamplifiable by a treatment during the amplification process. Causing the amplified oligonucleotide containing exo-sample nucleotide to be cleaved at or near the location of the exo-sample nucleotide is one example of making such an oligonucleotide substantially unamplifiable.
The invention eliminates the products of previous amplifications from further amplification by means of a treatment that leaves nucleic acid from the sample unaffected in its ability to be amplified. This treatment greatly reduces a major problem associated with amplification of nucleic acids, namely contamination of starting materials with the end products of previous amplification processes. In other words, this invention provides a process of discriminating against amplification products, and in favor of nucleic acids normally found in nature, prior to the start of succeeding amplification reactions.
More specifically, this invention relates to in vitro procedures which utilize enzymes to amplify specific nucleic acid sequences. Examples of such procedures include polymerase chain reaction (PCR) and ligase chain reaction (LCR). A serious limitation of the PCR procedure, the LCR procedure and other similar procedures is contamination of the laboratory environment with the amplified nucleic acid end products of individual reactions. Such contamination commonly results in amplification not only of authentic nucleic acid which may be present in the sample of interest, but also of the contaminating end products from previous reactions. This invention provides a process to remove possible contamination of this type, without affecting the desired amplification of authentic nucleic acids.
The first embodiment involves first performing amplification procedures in which one or more of the four normal ribonucleoside triphosphates (rNTPs) or deoxyribonucleoside triphosphates (dNTPs) is replaced with one or more exo-sample nucleotides that are normally absent from or present very rarely in nucleic acids found in the samples whose amplification is desired. The DNA or RNA produced during such amplification processes can be differentiated from sample nucleic acids. Thus, one can discriminate against nucleic acids produced during amplification processes in favor of sample DNA or RNA prior to or during succeeding amplification processes, such that previously amplified nucleic acid can no longer be amplified, while sample DNA or RNA remains amplifiable.
The present invention represents an improvement upon in vitro oligonucleotide-dependent, nucleic acid amplification procedures. In the methods of the present inventi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for controlling contamination of nucleic acid... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for controlling contamination of nucleic acid..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for controlling contamination of nucleic acid... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2531196

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.