Process to produce a composition

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06248840

ABSTRACT:

FIELD OF THE INVENTION
This invention is related to the field of polymers, wherein said polymers comprise polymerized ethylene.
BACKGROUND OF THE INVENTION
The process of making polymers and the process of using polymers is a multi-billion dollar business. This business produces and uses billions of pounds of polymers each year. Millions of dollars have been spent on developing technologies that can add value to this business. This is because of the large scale economics that are involved. That is, even small improvements in these processes can add millions of dollars to the bottom line. Consequently, research is on-going to find new and useful ways to produce these polymers and new and useful ways to use these polymers.
It is known in the art that increasing the long chain branching level (e.g. via crosslinking) of a polymer, where said polymer comprises polymerized ethylene, results in an increase in the haze of films obtained from blown film. Additionally, it is known that crosslinking such polymers substantially decreases their use in film applications because such crosslinking substantially decreases the dart impact, TD tear resistance, and gloss, of the film.
SUMMARY OF THE INVENTION
It is an object of this invention to provide a process to produce a composition.
It is another object of this invention to provide said composition.
In accordance with this invention a process to produce a composition is provided. This process comprises (or optionally, “consist essentially of”, or “consists of”) reacting: (a) at least one polymer component; with (b) at least one reactive component; to produce a composition.:
In accordance with this invention a composition is provided. Said composition comprises (or optionally, “consist essentially of”, or “consists of”) said composition produced by said process.
These objects and other objects will become more apparent from the following.
The terms “comprise”, “comprises” and “comprising” are open-ended and do not exclude the presence of other steps, elememts, or materials that are not specifically mentioned in this specification.
The phrases “consists of” and “consisting of” are closed ended and do exclude the presence of other steps, elements, or materials that are not specifically mentioned in this specification, however, they do not exclude impurities normally associated with the elements and materials used.
The phrases “consists essentially of” and “consisting essentially of” do not exclude the presence of other steps, elements, or materials that are not specifically mentioned in this specification, as along as such steps, elements, or materials, do not affect the basic and novel characteristics of the invention, additionally, they do not exclude impurities normally associated with the elements and materials used.
The above terms and phrases are intended for use in areas outside of U.S. jurisdiction. Within the U.S. jurisdiction the above terms and phrases are to be applied as they are construed by U.S. courts and the U.S. Patent Office.
DETAILED DESCRIPTION OF THE INVENTION
The polymer component comprises a polymer. This polymer comprises polymerized monomers. These monomers are selected from the group consisting of ethylene and one or more alpha-olefins.
The alpha-olefins useful in this invention have from 3 to 12 carbon atoms. However, it is preferred when such alpha-olefins have from 3 to 10 carbon atoms, and it is most preferred when such alpha-olefins have from 4 to 8 carbon atoms. Suitable examples of such alpha-olefins are propene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-heptene, 1-octene, 1-nonene, and 1-decene. Mixtures of alpha-olefins can be used in this invention.
The polymer needs to be produced by a metallocene catalyst. For the purposes of this invention, metallocene catalysts are defined as those catalysts claimed on the issue date, in U.S. Pat. No. 5,498,581, which is entitled “Method for Making and Using a Supported Metallocent Catalyst System” and which issued on Mar. 12, 1996. The entire disclosure of U.S. Pat. No. 5,498,581, is hereby incorporated by reference. A suitable, and preferred, metallocene catalyst is ((9-fluorenyl) (cyclopentadienyl) (methyl) (3-butenyl) methane) zirconium dichloride.
The polymer has a density from about 0.90 to about 0.95 grams per cubic centimeter. However, it is preferable when the density is from about 0.91 to about 0.93, and it is most preferable when the density is from 0.915 to 0.925 grams per cubic centimeter. This density is measured in accordance with ASTM D 1505.
The polymer has a melt index from about 0.1 to about 5 grams per ten minutes. However, it is preferable when the melt index is from about 0.3 to about 3, and it is most preferable when the melt index is from 0.5 to 2.5 grams per ten minutes. This melt index is measured in accordance with ASTM D 1238, condition F.
The polymer has a heterogeneity index from about 2 to about 3. However, it is preferable when the heterogeneity index is from about 2.1 to about 2.7, and it is most preferable when the heterogeneity index is from 2.2 to 2.5. This heterogeneity index is measured using gel permeation chromatography.
The reactive component can be any suitable crosslinking agent that crosslinks such polymers. However, it is preferred if the crosslinking agent is an organic peroxide crosslinking agent. For example, diperoxy compounds can be employed as the crosslinking agents. Examples of diperoxy compounds suitable for use as crosslinking agents include acetylenic diperoxy compounds such as hexynes having the formula
octynes having the formula
and octadiynes having the formula
wherein R is selected from the group consisting of tertiary alkyl, alkyl carbonate, and benzoate. The molecular weights of the compounds are generally in the range of from about 200 to about 600. Examples of acetylenic diperoxy compounds described above include:
2,7-dimethyl-1,7-di(t-butylperoxy)octadiyne-3,5;
2,7-dimethyl-2,7-di(peroxy ethyl carbonate)octadiyne-3,5;
3,6-dimethyl-2,6-di(peroxy ethyl carbonate)octyne-4;
3,6-dimethyl-2,6-di(t-butylperoxy)octyne-4;
2,5-dimethyl-2,5-di(peroxybenzoate)hexyne-3;
2,5-dimethyl-2,5-di(peroxy-n-propyl carbonate)hexyne-3;
2,5-dimethyl-2,5-di(peroxy isobutyl carbonate)hexyne-3;
2,5-dimethyl-2,5-di(alpha-cumyl peroxy)hexyne-3;
2,5-dimethyl-2,5-di(peroxy ethyl carbonate)hexyne-3;
2,5-dimethyl-2,5-di(peroxy beta-chioroethyl carbonate)hexyne-3; and
2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3.
Other diperoxy compounds suitable for use as the crosslinking agent of the composition of the present invention include hexanes having the formula
and octanes having the formula
wherein R is selected from the group consisting of tertiary alkyl, alkyl carbonate, and benzoate. The molecular weights of the compounds are generally in the range of from about 200 to a bout 600. Examples of diperoxy compounds described above include:
3,6-dimethyl-2,6-di(t-butylperoxy)octane;
3,6-dimethyl-2,6-di(peroxy ethyl carbonate)octane;
2,5-dimethyl-2,5-di(peroxybenzoate)hexane;
2,5-dimethyl-2,5-di(peroxy isobutyl carbonate)hexane; and
2,5-dimethyl-2,5-di(t-butylperoxy)hexane.
Preferably, the diperoxy compound employed as the crosslinking agent of the composition of the present invention is selected from the group consisting of 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne-3 and 2,5-dimethyl-2,5-di(t-butylperoxy)hexane. Other suitable example of crosslinking agents are disclosed in U.S. Pat. Nos. 3,214,422 and 4,440,893 the entire disclosures of which are hereby incorporated by reference.
It should be noted that the amount of “active oxygen” in a crosslinking agent can significantly affect the amount of agent to use. The term “active oxygen” is well known in the art. In general, it means the active (—O—O—) bonds in a molecule. The amount of active oxygen that should be used in this invention is from about 0.1 to about 20 parts per million by weight based on the weight of the polymer. Preferably, the amount of active oxygen that should be used in this invention is from about 1 to about

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process to produce a composition does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process to produce a composition, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process to produce a composition will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2527698

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.