Hitless manual path switching using linked pointer processors

Multiplex communications – Fault recovery – Bypass an inoperative channel

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S248000

Reexamination Certificate

active

06246668

ABSTRACT:

FIELD OF THE INVENTION
This invention is directed to a hitless manual path switching method and apparatus, and more particularly, to a method and apparatus for hitless manual path switching using linked pointer processors.
BACKGROUND ART
Hitless (error-free) switching is required mainly in the case of fiber-maintenance/construction. When telecommunication cables are relocated in an existing digital network, the information that was transported on these cables must be redirected on an alternative path to avoid interruption of services. In such cases, the network operator must redirect manually the traffic on the affected path over an alternative path, that most probably has a different length and a different number of network elements (NEs).
In case of protected networks, it is possible to use the protection fiber to accommodate the traffic affected by the relocation/maintenance operation.
However, in general, hitless manual switching operation requires reconfiguring the network for locating an alternative path to accommodate the disrupted traffic, which is not an easy task.
As there is a difference in the length of the permanent and alternative paths and in the number of NEs in each of these paths, the signals travelling along these two paths generally experience a differential delay, which must be aligned at the receiver site in order to obtain hitless switching.
There is a need to achieve cross-connection of the paths without disrupting the services, whereby eliminating the need for network operations associated with switching traffic from one path to another.
There is also a need to provide a communication network with hitless switching capabilities for traffic at small physical granularity, for flexibility and cost purposes.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a communication system with a method and apparatus for hitless switching between a cable-to-be-relocated and a cable for normal operation.
It is another object of the invention to provide a method and apparatus for implementing hitless switching at the path level in a synchronous communication system operating according to the SDH/SONET standard.
Therefore in accordance with a first aspect of the present invention there is provided a hitless path switching method for re-establishing synchronous traffic along a primary path from an alternate path, comprising the steps of at an originating path terminal, generating a trace message, inserting the trace message in an information signal and transmitting the information signal along the primary path as a first information signal and along the alternate path as a second information signal, at a receiving path terminal, recovering a first variant of the trace message from the first information signal and recovering a second variant of the trace message from the second information signal, each the first and second variants being a respective delayed variant of the trace message; aligning the first and the second information signals based on the phase difference between the first and the second variants generating a signal when alignment is completed, and at the originating path terminal, discontinuing transmission of the information signal along the alternate path upon generation of the signal.
In accordance with a second aspect of the present invention there is provided a hitless path switching apparatus for re-establishing synchronous traffic along a primary path from an alternate path, comprising, a first align block for receiving an information signal over a primary path and providing a first outgoing information signal of a controlled phase difference with the information signal, a link for providing to the first align block, time information from a second align block, and a first buffer for storing a first variant of a received trace message extracted from a known timeslot of L successive frames of the information signal.
Advantageously, the method and apparatus according to the present invention provide a delay adjustment function which equalizes the phases of the signal travelling along the cable-to-be-relocated and the cable for the normal operation, so that the path switching occurs with practically no errors.
The method and apparatus according to the present invention advantageously use linked point processors, which eliminate the need for a master-slave relationship. A master-slave relationship is generally more difficult to control.


REFERENCES:
patent: 5974027 (1999-10-01), Chapman
patent: 6061329 (2000-05-01), Abe
patent: 6078596 (2000-06-01), Wellbrock
patent: 3-201840 (1991-09-01), None
patent: 8-79214 (1996-03-01), None
patent: 8-223130 (1996-08-01), None
patent: 9-36826 (1997-02-01), None
patent: 10-135923 (1998-05-01), None
K. Nishihata, et al., “SDH 52/156 Mb/s (VC-3/4) Digital Cross-Connect Systems with Hit-Less Switching Function”, NTT Review, vol. 5, No. 5, Sep. 1993, pp. 64-71.
Y. Sato et al., “Economical and Reliable SDH Optical Transmission System”, NTT Review, vol. 7, No. 6, Nov. 1995, pp. 80-84.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hitless manual path switching using linked pointer processors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hitless manual path switching using linked pointer processors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hitless manual path switching using linked pointer processors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2525591

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.