Peroxy acid treatment to control pathogenic organisms on...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Biocides; animal or insect repellents or attractants

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S557000, C514S558000, C504S114000, C504S142000, C504S157000, C504S307000, C504S320000, C047S05900R

Reexamination Certificate

active

06238685

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a process of using peracid compositions, especially mixed peracid systems, to treat field, hydroponic or greenhouse growing plant tissue, seeds, fruits, growing media and containers. The peracid can lower the natural, plant pathogen and human pathogenic microbial load resulting in less waste to molding, spoilage, and destruction because of pathogenic poisons.
BACKGROUND OF THE INVENTION
In the production of fruits and vegetables, plants can be grown in the field, in greenhouses, and hydroponically. Each location has its own growing medium, environment and growing conditions. Agricultural personnel work to maximize production by maximizing growing conditions while minimizing attack on seeds, seedlings, plants and fruit by living pests. Such pests include insects, rodents, bacteria, fungi, etc.
Substantial attention has been given to antimicrobial compounds that attack bacteria and fungi on seeds, seedlings, growing plants and fruit in the production cycle on growing plants. The use of fungicides in agriculture is necessitated by the great losses caused by a wide variety of plant-pathogenic microorganisms. To be economic, the costs of controlling plant diseases by the application of bactericides and fungicides must be offset by potential gains of several fold. Large tonages of fungicides are required in the agriculture of apples, pears, bananas, cereals, cocoa, coffee, cotton, potatoes, tobacco, grapes, sprouts and other common fruits and vegetables including celery, leeks, onions, lettuce, spinach, brussel sprouts, potatoes, truffles, garlic, shallots, peppers, beans, tomatoes, almonds, pears, apples, peanuts and others. Fungicides are typically applied in water suspension with hydraulic sprayers or in the form of dust, granules or fumigants. Early fungicides included sulfur and polysulfides, heavy metals and others. Such harsh fungicides have been replaced by newer but still toxic materials such as quinones, organosulfur compounds, imidazolines and guanidines, trichloromethylthiocarboximides, chlorinated and nitrated benzenes, oxithines, benzimidazoles, pyrimidines, and others. These broad spectrum protectant materials effect enzyme and membrane systems of the target microorganism. Typically, the mode of action includes inhibition of fungal or bacterial energy production, interference with biosynthesis or disruption of cell membrane structure.
The above fungicides have had some success; however, they are viewed as toxic materials and a substantial quantity of plant produce is wasted due to their deliterious effect. Accordingly, a substantial need exists to continue to develop antimicrobial materials that can protect growing plants including seeds, cuttings, seedlings, growing plants, plant parts, fruit, and other agricultural produce.
Peroxy Acids
Further, human and plant pathogenic bacteria and fungi can be a contamination problem in growing plants. We have found
coli
form,
salmonella,
and other bacteria common in the agricultural and greenhouse environment can contaminate growing plants and pose a threat to human health in consumption of fresh vegetables, fruit and produce. A substantial need exists for treatments that can reduce bacterial contamination.
Peroxy acids are strong oxidizers and have the simple general structure given as formula (1), where R can be essentially any hydrocarbon group:
Antimicrobial Treatments
Peroxy-containing compositions are known for use in the production of microbicidal agents. One such composition is disclosed in Bowing et al., U.S. Pat. No. 4,051,059 containing peracetic acid, acetic acid or mixtures of peracetic and acetic acid, hydrogen peroxide, anionic surface active compounds such as sulfonates and sulfates, and water.
Peracetic acid has been shown to be a good biocide, but only at fairly high concentrations (generally greater than 100 parts per million (ppm)). Similarly, peroxyfatty acids have also been shown to be biocidal, but only at high concentrations (greater than 200 ppm), such as in the composition disclosed in European Patent Application No. 233,731.
GB 2187958 A and EU 0242990 A2 describe the use of either peracetic or per propionic acid for controlling plant pathogens on flowers and fruit tissue. They are directed to edible field-grown plants and cereal crops.
WO 94/06294 describes the use of a single peracid composition along with mixtures of aliphatic acids for vegetable disinfection.
U.S. Pat. No. 5,168,655 relates to hydroponic treatment using peracids. The reference describes peracid treatments of hydroponic growing substrates (e.g., rock wool) prior to growth; i.e., the growth substrate is treated after a crop production cycle and prior to a subsequent crop-production cycle. In contrast, the present invention describes hydroponic treatment during the growth cycle.
U.S. Pat. No. 5,200,189 to Oakes et al. describes use of mixed peracid compositions to enhance microbial kill for hard surface sanitizing. Certain mixed peracids have now been found useful to enhance microbial kill on sensitive growing plant tissue or its harvested fruiting matter.
U.S. Pat. No. 2,512,640 to Greenspan et al. discloses the use of single peracid compositions to enhance microbial reduction on produce, reduce produce browning, and prevent spoilage. Greenspan does not disclose any mixed peracid synergies and applies the peracid only to harvested fruit.
GB 2257630A describes the use of a single peracid which is activated by an activator (Fe, Cu, Br, I) for controlling microbial counts on hard surfaces, effluent waters and growing plant tissues. Again, this is a single peracid composition which fails to teach synergies between mixed peracids.
DK 9300538 describes the use of peracetic acid, followed by a biological combat, for controlling pathogens in recirculating watering systems to plant crops. This reference does not describe any direct crop treatments.
JP 07031210 teaches the use of 5 to 200 ppm peracetic and or perpropionic acids for treatment of seedling culture medium prior to planting; specifically for the control of slime, algae or fungi on the culture medium. The teaching is limited to the use of C
2
and C
3
acids and has no application to growing plant tissue.
JP 07258005 A teaches the use of high levels (1000 ppm) of peracetic acid for controlling bacteria on rice. This application is intended only to effect disease control and not for hydroponic growth of the grain matter.
DE 3003875 A describes the use of C
1
-C
4
peracids and hydrogen peroxide to control phytopathogenic pests on soil. This reference does not disclose any direct application to plants.
BRIEF DESCRIPTION OF THE INVENTION
We have found that a mixed peracid treatment composition can be used to protect growing plant tissue from the undesirable effects of microbial attack. The mixed peracid materials used in this invention can be applied to growing plant tissues and can provide residual antimicrobial effects after the plant has completed its growth cycle, fruit or vegetable material have been harvested and sent to market. The materials of the invention have been found to be excellent antimicrobial compounds but pose little toxic effects to agricultural workers or the ultimate consumer.
We have found that peroxy acid materials can be an effective treatment of living or growing plant tissues including seeds, roots, tubers, seedlings, cuttings, rooting stock, growing plants, produce, fruits and vegetables, etc. Under certain circumstances, a single peroxyacid material can be effective, however, in other circumstances, a mixed peroxy acid has substantially improved and surprising properties.
The invention involves a peroxyacid antimicrobial concentrate and diluted end use composition including an effective microbicidal amount of a C
2
-C
4
peroxycarboxylic acid such as peracetic acid, an effective microbicidal amount of a C
5
-C
12
peroxyacid, preferably with a C
6
-C
12
or a C
8
-C
12
peroxy acid, or mixtures thereof. The concentrate composition can be diluted with a major proportion of water to form an antimicrobial

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Peroxy acid treatment to control pathogenic organisms on... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Peroxy acid treatment to control pathogenic organisms on..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Peroxy acid treatment to control pathogenic organisms on... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2522249

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.