Tuberculocidal synergistic disinfectant compositions and...

Drug – bio-affecting and body treating compositions – Inorganic active ingredient containing – Elemental chlorine or elemental chlorine releasing inorganic...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S661000, C514S241000, C514S242000, C514S642000, C514S643000

Reexamination Certificate

active

06245361

ABSTRACT:

TECHNICAL FIELD
This invention relates to aqueous cleaning and disinfecting compositions that contain a synergistic combination of specific amounts of a chlorine bleach compound with specific amounts of bactericidal quaternary ammonium compounds wherein the compositions are tuberculocidal at unexpectedly low concentrations as well as to methods of disinfecting surfaces containing tubercule bacilli and other pathogenic micro-organisms such as bacteria and viruses.
BACKGROUND ART
Complete elimination of pathogenic micro-organisms on various surfaces, especially hard surfaces where such organisms may stay active for relatively long periods of time, has long been a goal of those charged with cleaning and maintaining in an antiseptic fashion commercial and institutional settings such as hospitals, medical clinics, meat packing and food preparation areas. A variety of chemical disinfecting agents have been developed to accomplish that goal. However, some of these agents have disadvantages in that some are corrosive or unpleasant to smell or capable of staining certain surfaces that commonly need to be cleaned and disinfected. Furthermore, some such agents are simply not effective against certain of the micro-organisms that may be found in institutional settings.
Tubercle bacilli create a significant problem in commercial and institutional settings, especially in hospitals, because of their tendency to be rather easily transmitted from one person to another. A number of researchers have reported on the efficacy of various chemical disinfecting agents to eliminate tubercle bacilli.
An article by W. A. Rutala, et al. entitled “Inactivation of
Mycobacterium tuberculosis
and
Mycobacterium bovis
by 14 hospital disinfectants” (
American Journal of Medicine
, vol. 91(3B), pages 267S-271S (1991)) reports that chlorine dioxide, 0.80% hydrogen peroxide plus 0.06% peroxyacetic acid and an iodophor achieved complete inactivation of both of the titled micro-organisms while two different quaternary ammonium compounds as well as 100 parts per million (“ppm”) of chlorine were not effective against both micro-organisms. They reported that glutaraldehydes, a phenolic and chlorine (1,000 ppm) were completely effective against
Mycobacterium tuberculosis
and showed good inactivation of
Mycobacterium bovis
. This article reports on page 268S that
Mycobacterium tuberculosis
“was studied because it is a recognized human pathogen that has been associated with infections caused by ineffective disinfectants or disinfection procedures . . . and [
Mycobacterium] bovis
was selected because it is the organism required by the AOAC for tuberculocidal activity testing . . . .”
An article by M. Best et al. entitled “Efficacies of selected disinfectants against
Mycobacterium tuberculosis
” (
Journal of Clinical Microbiology
, vol. 28(10), pages 2234-9 (1990)) likewise reported that the quaternary ammonium compound tested (0.04% dimethyl benzylammonium chloride) was ineffective against
Mycobacterium tuberculosis
. It also reported that sodium hypochlorite required a higher concentration (10,000 parts per million “ppm”) of available chlorine to achieve an effective level of disinfection than did sodium dichloro isocyanurate (6,000 ppm).
Chlorine bleaches such as aqueous sodium hypochlorite have long been recognized as being effective against all types of micro-organisms provided that the bleach is used in sufficiently high concentrations such as 5,000 ppm (0.5%) of active sodium hypochlorite and higher depending on the micro-organism to be eliminated. These types of solutions are recommended for use for disinfecting an area where blood or other potentially pathogenic biological contaminants have been spilled or released and total disinfection is required. At such high levels of sodium hypochlorite, the chlorine smell from the bleach simply makes this agent undesirable for routine cleaning and disinfection of, for example, hospital rooms, where patients remain in the room during and after the cleaning and disinfection process.
A sterilization system based on a chlorine bleach disinfecting agent that uses two baths in which articles to be sterilized are placed is described in U.S. Pat. No. 4,418,055 to Andersen et al. In this system, the ingredients used in the sterilization system are stored in hermetically sealed bags that keep reactive ingredients away from each other until use. The bags also provide premeasured quantities of the ingredients to avoid any errors that might be caused by having the user measure out each component needed.
Quaternary ammonium compounds have long been recognized as being useful for their antibacterial properties as can be seen from U.S. Pat. No. 3,836,669 to Dadekian; U.S. Pat. No. 4,320,147 to Schaeufele; U.S. Pat. No. 4,336,151 to Like et al.; U.S. Pat. No. 4,444,790 to Green et al.; U.S. Pat. No. 4,464,398 to Sheets et al.; and U.S. Pat. No. 4,540,505 to Frazier.
Higher levels of quaternary ammonium compounds have been reported as being effective disinfectants against various pathogenic micro-organisms, even including
Mycobacterium tuberculosis
. J. Dos Reis Meirelles Neto et al. report in their article entitled “Tuberculocidal activity of some cationic detergents” (“Atividade tuberculocida de alguns detergentes cationicos”)—
Folha Med
., vol. 87(4), pages 227-232 (1983)—that the quaternary ammonium salts benzalkonium chloride, ammonium-alkyl-dimethylbenzyl chloride plus ammonium-alkyl-dimethylethyl-benzyl chloride and cetylpyridinium chloride in a concentration of 0.4% showed microbiocidal action to sputum microbial flora and some toxic effect to
Mycobacterium tuberculosis.
Another article by L. Szymaczek-Meyer et al. entitled “Effect of some disinfectants (phenol derivatives, quaternary ammonium compounds, aldehydes and chloramine) on human type tubercle bacilli sensitive and resistant to antibacillary drugs” (
Med. Dosw. Mikrobiol
, vol. 31(1), pages 53-59 (1979)) reported the results of using commercial concentrations of available hospital disinfectants on dense suspensions of tubercle bacilli strain Hsub 3sub 7Rv and human type wild strains sensitive and resistant to antibacillary drugs. They found that some of the disinfectants checked were tuberculocidal, but generally used solutions containing at least about 0.6% active disinfecting agent.
To minimize expense, undesirable odors and possible detrimental effects of disinfecting agents on surfaces to be disinfected, it is desirable to minimize the amount of disinfecting agents used while still retaining efficacy against pathogenic micro-organisms, especially against tubercle bacilli such as
Mycobacterium tuberculosis
. As will be explained in greater detail below, I have found that a combination of a specific amount of a chlorine bleach compound such as sodium dichloro isocyanurate with a specific amount of a bactericidal quaternary ammonium compound provides a composition that is effective against tubercle bacilli even though the concentration of the each compound used, when evaluated individually at that concentration, is ineffective against tubercle bacilli.
In the past, combinations of chlorine or peroxygen bleaches with quaternary ammonium compounds have been taught, but for different purposes or at different use levels than I have discovered. Typically, a relatively large amount of chlorine bleach (0.5% to 1% or more of active bleach compound which is 5,000 to 10,000 ppm of active bleach compound) has been combined with cationic surfactants (which typically refer to quaternary ammonium compounds generally and not all of these compounds possess bactericidal or disinfectant properties). If a sufficiently high amount of bleach compound is used (i.e., that, by itself, is capable of destroying pathogenic micro-organisms, including tubercle bacilli), then there is no need to include a bactericidal quaternary ammonium compound for disinfection purposes.
U.S. Pat. No. 3,669,891 to Greenwood et al. teaches various compositions that emit visible light during use. Example 8 teaches a two-component air freshener/g

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Tuberculocidal synergistic disinfectant compositions and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Tuberculocidal synergistic disinfectant compositions and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Tuberculocidal synergistic disinfectant compositions and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2519643

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.