Hydrokinetic torque converter

192 clutches and power-stop control – Vortex-flow drive and clutch – Including drive-lockup clutch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C192S212000, C029S509000, C029S521000, C403S274000

Reexamination Certificate

active

06273226

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATION
This Application claims foreign priority benefits under 35 U.S.C. §119(a-d) to German patent application 199 00 861.2, filed Jan. 12, 1999 by inventors, Rudolf Hönemann, Thomas Heck, and Steven Olsen for an invention entitled Hydrodynamischer Drehmomentwandler (“Hydrokinetic Torque Converter”).
BACKGROUND OF INVENTION
1. Field of Invention
This invention relates to improvements in apparatus for transmitting torque in power trains by way of a hydrokinetic torque converter which is equipped with a bypass or lockup clutch and, more particularly, to improvements in transmitting torque by way of a hydrokinetic torque converter which can transmit torque by way of a turbine and/or by way of a bypass or lockup clutch constructed and assembled to operate in parallel with such turbine. Still more particularly the present invention relates to an improved apparatus and method utilized in the construction and assembly of such a torque converter, which reduces the complexity, the weight, the space requirements, and manufacturing costs of the torque transmitting apparatus.
As a general rule, a hydrokinetic torque converter which can be utilized in accordance with the present apparatus and method comprises an impeller or hydraulic pump, a turbine, a stator, and a housing, which is driven by the rotary output element of a prime mover (such as the engine of a motor vehicle), and serves to transmit torque to the hydraulic pump. The housing is coaxial with the pump and with the turbine and defines an interior chamber, which accommodates the turbine as well as a bypass clutch or lockup clutch cooperating with a torsion damper including an input element and an output element whose torque capacity (i.e. the maximum torque which the damper can transmit) is less than the nominal (i.e. maximum achievable) torque of the prime mover. The damper prevents the transmission of any appreciable oscillations of torque from the output element of the engine of the motor vehicle to the input shaft of the transmission while the motor vehicle is operated within the main driving range.
The bypass clutch or lockup clutch serves merely to operate with slip in order to compensate for peaks of oscillations of the torque that is being transmitted by the output element of the engine. When the operation of the motor vehicle is within the main driving range as well as when the bypass clutch is operated with slip, undesirable fluctuations of torque cannot be transmitted to the input element of the transmission by the expedient of reducing the magnitude of the torque which can be transmitted by the clutch. Such pronounced fluctuations of torque are likely to develop, for example, due to resonance, to an abrupt change of the load and/or for certain other reasons.
Such a bypass or lockup clutch can include a friction clutch having a first friction surface on a substantially radially extending portion of the housing and a second friction surface provided on an axially displaceable piston which is movable in the direction of the turbine to move its friction surface into or away from frictional engagement with the first friction surface such that the magnitude of torque, which the clutch can transmit, depends on the extent of frictional engagement between the first and second surfaces. The second friction surface is normally provided on a radially outer portion of the piston, and the radially inner portion of such piston can transmit torque directly to the turbine or to the rotary input element of a transmission, which receives torque from the turbine or a driven hub which is separably connected to the turbine.
2. Description of Related Art
Under the current state of the art, the connection between the output element of the torsion damper and the hub driven by the turbine is either made by mating internal and external splines or as a riveted joint. This has the inherent disadvantages of the rather expensive and time consuming manufacturing processes required to machine the mating splines and/or requires numerous component parts and/or other fasteners and related labor costs to install the damper in the torque converter.
Hydrokinetic torque converters of the above-outlined character are disclosed, for example, in U.S. Pat. Nos. 5,029,087 and 4,577,737 recited herein, and also disclosed in U.S. Pat. No. 5,752,894, which is commonly owned and incorporated herein by reference.
SUMMARY OF THE INVENTION
Accordingly, the present invention provides an improved apparatus and method for assembly of a hydrokinetic torque converter comprising a hydraulic pump, a turbine a stator, and a housing which is driven by the output element of an engine of a motor vehicle and serves to transmit torque to the hydraulic pump. The housing is coaxial with the pump and the turbine and defines an interior chamber, which accommodates the turbine as well as a bypass or lockup clutch cooperating with a torsion damper including an input member and an output member. In the conventional practice, the connection between the output member of the torsion damper and the hub driven by the turbine is made by mating internal and external splines and/or as a riveted joint.
The present invention provides an improved apparatus and method for interlocking the output member of the torsion damper with the driven hub of the turbine by utilizing a metal staking process in combination with a circumferential serration formed on the output member to form a fixed, non-rotatable connection therebetween.
Thus, the inherently expensive and complex manufacturing processes for such splined components and other related components and/or fasteners are significantly reduced or eliminated. In addition, other related components of the torque converter cooperating with the torsion damper have been integrated into single components to reduce the space requirements of the torque transmitting apparatus.
In view of the above, it is an object of the present invention to provide useful improvements in a hydrokinetic torque converter and in the assembly methods thereof in which a metal staking process in combination with a circumferential serration formed in such output member are utilized to form a non-rotatable axial connection between the driven hub of the turbine and the output member of the torsion damper.
Another object of the present invention is to provide an improved hydrokinetic torque converter in light of the described state of the art, which in contrast to the state of the art, is relatively less complex mechanically, requires fewer manufacturing and machining processes, and as a result is less expensive to manufacture and assemble.
Another object of the invention is to create a torque converter, which is more compact as the result of having fewer component parts and/or multiple parts integrated into a single component having reduced space requirements.
Other features and technical advantages of the present invention will become apparent from a study of the following description and the accompanying drawings.


REFERENCES:
patent: 4577737 (1986-03-01), Niikura et al.
patent: 5029087 (1991-07-01), Cowan et al.
patent: 5752894 (1998-05-01), Fischer
patent: 5762172 (1998-06-01), Tsukamoto et al.
patent: 5879253 (1999-03-01), Friedmann et al.
patent: 6056092 (2000-05-01), Hinkel
patent: 6056093 (2000-05-01), Hinkel
patent: 6068096 (2000-05-01), Morita

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hydrokinetic torque converter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hydrokinetic torque converter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hydrokinetic torque converter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2515054

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.