High throughput assay system

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091100, C435S091200

Reexamination Certificate

active

06238869

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates, e.g., to compositions, apparatus and methods useful for concurrently performing multiple biological or chemical assays, using repeated arrays of probes. A plurality of regions each contains an array of generic anchor molecules. The anchors are associated with bifunctional linker molecules, each containing a portion which is specific for at least one of the anchors and a portion which is a probe specific for a target of interest. The resulting array of probes is used to analyze the presence of one or more target molecules which interact specifically with the probes. The invention relates to diverse fields distinguished by the nature of the molecular interaction, including but not limited to pharmaceutical drug discovery, molecular biology, biochemistry, pharmacology and medical diagnostic technology.
Pluralities of molecular probes arranged on surfaces or “chips” have been used in a variety of biological and chemical assays. Assays are performed to determine if target molecules of interest interact with any of the probes. After exposing the probes to target molecules under selected test conditions, detection devices determine whether a target molecule has interacted with a given probe.
These systems are useful in a variety of screening procedures for obtaining information about either the probes or the target molecules. For example, they have been used to screen for peptides or potential drugs which bind to a receptor of interest, among others; to screen samples for the presence of, for example, genetic mutations, allelic variants in a population, or a particular pathogen or strain of pathogen, among many others; to study gene expression, for example to identify the mRNAs whose expression is correlated with a particular physiological condition, developmental stage, or disease state, etc.
SUMMARY OF THE INVENTION
This invention provides compositions, apparatus and methods for concurrently performing multiple biological or chemical assays, and allows for high throughput analysis of multiple samples—for example, multiple patient samples to be screened in a diagnostic assay, or multiple potential drugs or therapeutic agents to be tested in a method of drug discovery. A combination is provided which is useful for the detection of one or more targets in a sample. This combination comprises a surface comprising a plurality of spatially discrete regions, which can be termed test regions and which can be wells, at least two of which are substantially identical. Each surface comprises at least two, preferably at least twenty or more, e.g., at least about 25, 50, 96, 864, or 1536, etc., of such substantially identical regions. Each test region defines a space for the introduction of a sample containing (or potentially containing) one or more targets and contains a biological or chemical array. (Phrases such as “sample containing a target” or “detecting a target in a sample” are not meant to exclude samples or determinations (detection attempts) where no target is contained or detected. In a general sense, this invention involves arrays to determine whether a target is contained in a sample irrespective of whether it is or is not detected.) This array comprises generic “anchors,” each in association with a bifunctional linker molecule which has a first portion that is specific for the anchor and a second portion that comprises a probe which is specific for at least one of the target(s). The combination of this invention is placed in contact with a sample containing one or more targets, which optionally react with a detector molecule(s), and is then interrogated by a detection device which detects reactions between target molecules and probes in the test regions, thereby generating results of the assay.
The invention provides methods and compositions particularly useful for high throughput biological assays. In especially preferred embodiments, the invention can be used for high throughput screening for drug discovery. For example, a high throughput assay can be run in many (100 for example) 96-well microplates at one time. Each well of a plate can have, e.g., 36 different tests performed in it by using an array of about 36 anchor and linker pairs. That is, 100 plates, with 96 wells per plate, and each with 36 tests per well, can allow for a total of 345,000 tests; for example, each of 9,600 different drug candidates can be tested simultaneously for 36 different parameters or assays. High throughput assays provide much more information for each drug candidate than do assays which test only one parameter at a time. For example, it is possible in a single initial high throughput screening assay to determine whether a drug candidate is selective, specific and/or nontoxic. Non-high throughput methods necessitate extensive follow-up assays to test such parameters for each drug candidate of interest. Several types of high throughput screening assays are described, e.g., in Examples 15-17. The ability to perform simultaneously a wide variety of biological assays and to do very many assays at once (i.e., in very high throughput) are two important advantages of the invention.
In one embodiment, for example, using 96-well DNA Bind plates (Coming Costar) made of polystyrene with a derivatized surface for the attachment of primary amines, such as amino acids or modified oligonucleotides, a collection of 36 different oligonucleotides can be spotted onto the surface of every well of every plate to serve as anchors. The anchors can be covalently attached to the derivatized polystyrene, and the same 36 anchors can be used for all screening assays. For any particular assay, a given set of linkers can be used to program the surface of each well to be specific for as many as 36 different targets or assay types of interest, and different test samples can be applied to each of the 96 wells in each plate. The same set of anchors can be used multiple times to re-program the surface of the wells for other targets and assays of interest, or it can be re-used multiple times with the same set of linkers. This flexibility and reusability represent further advantages of the invention.
One embodiment of the invention is a combination useful for the detection of one or more target(s) in a sample, which comprises, before the addition of said sample,
a) a surface, comprising multiple spatially discrete regions, at least two of which are substantially identical, each region comprising
b) at least eight different oligonucleotide anchors, each in association with
c) a bifunctional linker which has a first portion that is specific for the oligonucleotide anchor, and a second portion that comprises a probe which is specific for said target(s).
Another embodiment of the invention is a combination useful for the detection of one or more target(s) in a sample, which comprises, before the addition of said sample,
a) a surface, comprising multiple spatially discrete regions, at least two of which are substantially identical, each region comprising
b) at least eight different anchors, each in association with
c) a bifunctional linker which has a first portion that is specific for the anchor, and a second portion that comprises a probe which is specific for said target(s).
Another embodiment of the invention is a method for detecting at least one target, which comprises contacting a sample which may comprise the target(s) with a combination as described above, under conditions effective for said target(s) to bind to said combination. Another embodiment is a method for determining an RNA expression pattern, which comprises incubating a sample which comprises as target(s) at least two RNA molecules with a combination as described above, wherein at least one probe of the combination is a nucleic acid (e.g., oligonucleotide) which is specific (i.e. selective) for at least one of the RNA targets, under conditions which are effective for specific hybridization of the RNA target(s) to the probe(s). Another embodiment is a method for identifying an agent (or condition(s)) that modulates an

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

High throughput assay system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with High throughput assay system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High throughput assay system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2514720

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.