Turbocharger system to inhibit reduced pressure in intake...

Power plants – Fluid motor means driven by waste heat or by exhaust energy... – With supercharging means for engine

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S602000, C060S605100, C416S19800R, C415S001000, C415S011000

Reexamination Certificate

active

06293103

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a turbocharger system for use in an internal combustion engine, and, more particularly, to a turbocharger system with a multi-stage compressor.
BACKGROUND ART
An internal combustion engine may include one or more turbochargers for compressing a fluid which is supplied to one or more combustion chambers within corresponding combustion cylinders. Each turbocharger typically includes a turbine driven by exhaust gases of the engine and a compressor which is driven by the turbine. The compressor receives the fluid to be compressed and supplies the fluid to the combustion chamber. The fluid which is compressed by the compressor may be in the form of combustion air or a fuel and air mixture.
During low load conditions such as an idle condition in a diesel engine, the exhaust gases do not drive the turbocharger at a rotational speed which is sufficient to significantly compress the combustion air. In fact, under low load conditions the turbocharger can act as a restriction to the combustion air which is transported to the intake manifold. It is thus possible that under certain low load conditions the turbocharger may in fact impede the efficient operation of the internal combustion engine.
It is also known that a turbocharger in an internal combustion engine may undergo a surge condition, during which the volumetric flow rate to the compressor is too low and the pressure ratio is too high. Thus, the flow can no longer adhere to the suction side of the blades of the compressor wheels and the discharge process is interrupted. The air flow through the compressor is reversed until a stable pressure ratio with positive volumetric flow rate is reached, the pressure builds up again and the cycle repeats. It is known to sense the impending or actual occurrence of a surge condition associated with a compressor and bleed off compressed gas within the compressor to alleviate the surge condition. It is also known to bleed off compressed gas within the compressor upon the occurrence of other operating conditions, such as a high pressure condition, etc. An example of a compressor in a turbocharger which bleeds off high pressure gas from the compressor is disclosed in U.S. Pat. No. 3,044,683 (Woollenweber).
The present invention is directed to overcoming one or more of the problems as set forth above.
DISCLOSURE OF THE INVENTION
In one aspect of the invention, a turbocharger system for an internal combustion engine is provided with a turbocharger including a rotatable shaft and a multi-stage compressor. The multi-stage compressor includes a first compressor wheel carried by the shaft, an axially extending first inlet associated with the first compressor wheel, a radially extending first outlet associated with the first compressor wheel, a second compressor wheel carried by the shaft, a second inlet associated with the second compressor wheel, a radially extending second outlet associated with the second compressor wheel, and an interstage duct fluidly interconnecting in series the first outlet associated with the first compressor wheel with the second inlet associated with the second compressor wheel. One or more sensors are each configured to sense a pressure associated with the multi-stage compressor and provide an output signal. A valve is fluidly coupled with the interstage duct and an ambient environment. A controller is coupled with each sensor and a valve. The controller controls operation of the valve dependent upon at least one output signal.
In another aspect of the invention, an internal combustion engine is provided with at least one intake manifold and a turbocharger. The turbocharger includes a rotatable shaft; a turbine having a turbine wheel carried by the shaft; and a multi-stage compressor. The multi-stage compressor includes a first compressor wheel carried by the shaft, an axially extending first inlet associated with the first compressor wheel, a radially extending first outlet associated with the first compressor wheel, a second compressor wheel carried by the shaft, a second inlet associated with the second compressor wheel, a radially extending second outlet associated with the second compressor wheel, and an interstage duct fluidly interconnecting in series the first outlet associated with the first compressor wheel with the second inlet associated with the second compressor wheel. The second outlet is fluidly coupled with the intake manifold. One or more valves are each fluidly coupled with an ambient environment and the interstage duct or intake manifold. Each valve is adapted to open when a pressure of the ambient environment is less than a pressure within the interstage duct or intake manifold.
In yet another aspect of the invention, a method of operating a turbocharger system in an internal combustion engine is provided with the steps of: providing at least one intake manifold; providing a turbocharger including: a rotatable shaft; and a multi-stage compressor including a first compressor wheel carried by the shaft, an axially extending first inlet associated with the first compressor wheel, a radially extending first outlet associated with the first compressor wheel, a second compressor wheel carried by the shaft, an axially extending second inlet associated with the second compressor wheel, a radially extending second outlet associated with the second compressor wheel, and an interstage duct fluidly interconnecting in series the first outlet associated with the first compressor wheel with the second inlet associated with the second compressor wheel, the second outlet being fluidly coupled with the intake manifold; fluidly coupling at least one valve between an ambient environment and one of the interstage duct and the intake manifold; and opening at least one valve when a pressure within the intake manifold is less than a pressure of the ambient environment.


REFERENCES:
patent: 1213889 (1917-01-01), Lawaczeck
patent: 2189106 (1940-02-01), Garve et al.
patent: 2216074 (1940-09-01), Garve et al.
patent: 3941506 (1976-03-01), Robbs et al.
patent: 4418537 (1983-12-01), Iwamoto
patent: 4571151 (1986-02-01), Paul
patent: 4689960 (1987-09-01), Schroder et al.
patent: 4807150 (1989-02-01), Hobbs

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Turbocharger system to inhibit reduced pressure in intake... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Turbocharger system to inhibit reduced pressure in intake..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Turbocharger system to inhibit reduced pressure in intake... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2514301

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.