Continuous production two stack baking apparatus

Foods and beverages: apparatus – Cooking – With other treating or handling of material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C099S372000, C099S373000, C099S374000, C099S380000, C099S427000

Reexamination Certificate

active

06196117

ABSTRACT:

FIELD OF THE INVENTION
TECHNICAL FILED
The invention relates to baking ovens through which baking molds consisting of two opening and closing mold halves are transported, wherein in the open state pre-products are filled, which in the closed baking molds are transformed into thin-walled shaped products, whose configuration corresponds to the hollow space defined by a closed baking mold.
BACKGROUND OF THE INVENTION
As pre-products shapeless masses can be used, which harden in the closed baking molds, or shapeless masses which in the closed baking molds are baked into thin-walled shaped products. As shapeless baking masses for human consumption certain doughs can be used, for instance sugar-less or sugar-containing wafer doughs, which according to the dough recipe, are baked into crisp, crunchy wafers or to soft wafers, or other baking doughs used in the production of sweet or non-sweetened bakery products. As shapeless baking masses it is also possible to use starch-based baking masses not suited for human consumption, which are baked in the form of decayable packaging trays or of other decayable starch-containing packaging products.
As pre-products it is also possible to use preshaped bodies to be integrated in the thin-walled shaped products to be produced, which are introduced in the molds together with the shapeless mass, or preshaped bodies which assume a different configuration in the closed molds. The preshaped bodies can be themselves thin-walled shaped products, which were made from shapeless masses.
In the known longitudinally arranged baking ovens for the production of thin-walled shaped bodies from shapeless masses, for the production of shaped bodies opening and closing mold halves are contained in 18-140 opening and closing baking tongs, whereby each mold with both its mold halves is received in the two tong halves of a baking tong. The baking tongs are connected in an endless chain, which runs continuously through the antechamber and subsequent baking space of the respective baking oven in one direction. When passing through the antechamber, the baking tongs are opened to open their respective baking molds, first in order to remove the respective thin-walled shaped body from the open baking mold, and than to introduce a measured amount of the shapeless mass in the opened baking mold. Subsequently the baking tongs are closed to close their respective baking molds. During the subsequent passage through the oven, the baking molds are heated and the shapeless mass enclosed in the closed baking molds is baked into thin-walled shaped bodies, while the baking molds are kept closed against the inner pressure generated inside them during baking.
In these baking ovens the longitudinally extending endless baking tong chain is arranged in two superimposed transport levels through the respective longitudinally extending baking space, and is guided from the one transport level to the other transport level at the rear end of the baking space and at the front end of the antechamber frontally connected to the baking space.
Each baking tong is designed as an externally actuatable machine, by means of which the therein contained baking mold is transported through the baking oven, opened and closed and kept closed. When passing through the antechamber, the baking mold is opened by means of its baking tong, kept open for a short time and then closed again. When passing through the baking space, the closed baking mold is kept closed by means of its baking tong. The endless baking tong chain is driven by a driving motor, which produces a continuous revolving motion of the baking tong chain. From this revolving motion in each baking tong the same motion sequence is induced, when in the antechamber they pass the respectively assigned control mechanisms, stationarily arranged in the antechamber, which in connection with the revolving motion of the baking tong chain produce each time the respective motion sequence of the baking tong, respectively of its parts.
When running though the antechamber the open baking tongs pass the product removal station, wherein the baked shaped bodies are removed from the opened baking molds and are discharged from the antechamber via the discharge station of the oven. After the product removal station, the opened baking tongs pass the loading station, wherein the measured amounts of the shapeless mass are introduced in the empty, open baking molds. During its travel through the longitudinally extending, horizontal baking space of the oven, the closed molds are heated in the closed baking tongs. In a gas-heated oven the baking molds are heated from the outside with hot gases, which are generated in the baking space of the oven and directed towards the baking tongs. In an electrically heated oven the baking molds are heated by means of the electric heating elements built into the tong halves of the baking tongs, which during their travel through the baking space are supplied with electric energy from an external source.
The thin-walled shaped bodies are produced in successive cycles, in the baking molds transported in cycle through the baking space by the baking tongs. Each baking cycle takes place in the respective baking mold during its travel from the loading station through the baking space to the product removal station. In each single baking cycle, in the loading station a shapeless mass is introduced into the baking mold previously opened by the baking tong, the baking mold is closed and kept closed by means of its baking tong, until it is opened again by means of its baking tong before it reaches the product removal station, and the thin-walled shaped body is removed from the open baking mold.
When the open baking mold is again transported by its baking tong to the loading station, then in this baking mold starts the next baking cycle for the production of a thin-walled shaped body.
In each baking cycle, during the baking process in the mold kept closed from the outside by the baking tong, the shapeless mass enclosed in the closed baking mold is distributed, made to rise and baked under pressure into a risen, thin-walled shaped body. The outer configuration of the resulting thin-walled shaped body is determined on its upper side by the surface configuration of the baking surface of the upper mold half and on its underside by the surface configuration of the baking surface of the lower mold half of the baking mold. The wall thickness of the resulting thin-walled shaped body is determined by the distance between these two mutually facing baking surfaces, when the mold is closed. The contour of the outer border of the resulting thin-walled shaped body is determined by the lateral limits of the hollow mold space of the closed baking mold.
When the baking mold and the baking tong are closed, the two tong halves and the two mold halves lie oppositely to each other. The tong halves are supported against each other by means of assigned mutually opposite stops. The baking surfaces arranged on the frontal side of the baking molds are facing each other and are opposite to each other at a predetermined distance. These two substantially horizontally arranged baking surfaces define between them the hollow mold space of the closed baking mold, which depending on the product to be made in the baking mold into a thin-walled shaped body, is laterally open, or laterally limited all around by sealing strips, but not closed up to be gastight. In this hollow mold space a measured amount of the shapeless mass is baked under pressure into a thin-walled shaped body. The baking gases formed during baking in the hollow mold space cause rising of the shapeless mass, distribute it throughout the hollow mold space and flow out laterally from the hollow mold space of the closed baking mold, between the two baking surfaces, into the baking space of the respective baking oven. When the baking mold and the baking tong are closed, the baking gases create an inner pressure in the hollow mold space of the baking mold, which is transmitted via the baking surfaces to the mold halves and fr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Continuous production two stack baking apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Continuous production two stack baking apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Continuous production two stack baking apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2511357

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.