Shrinkage-reducing agent for cement compositions

Compositions: coating or plastic – Coating or plastic compositions – Inorganic settable ingredient containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S802000, C106S819000, C106S823000

Reexamination Certificate

active

06251180

ABSTRACT:

The present invention relates to a shrinkage-reducing agent intended as additive in aqueous cement comprising compositions, such as a concrete, a hydraulic cement, a screened, a mortar or sealant composition. The agent comprises at least one acetal, preferably a cyclic formal, of a tri or polyfunctional alcohol, which acetal comprises at least one 1,3-dioxa group. The agent can, furthermore, comprise least one amorphous silica, such as a silicic acid. The invention refers in a further aspect to the use of said shrinkage-reducing agent in said compositions.
Additives have for a long time been used to control and/or adjust the properties of mineral based compositions. These additives include porosity adjusting additives, flowability adjusting additives, curing accelerators, curing retardants and the like. The additives can work surface chemically as well as chemically and the various mechanisms involved are not yet fully characterised. Frequently used additives include for instance formaldehyde resins, such as sulphonated naphthlene-formaldehyde resins and sulphonated amino-formaldehyde resins, salts of alkali metals and alkaline earth metals, lignosulphonic acids, silica, polyalcohols, gypsum and similar additives.
Shrinkage, such as dehydration shrinkage, in cement based compositions is today normally controlled by included amount of gypsum. Shrinkage give rise to cracking and other imperfections and other failures, which per se may result in cracking and/or weakened constructions. Optimised formulations, that is controlled shrinkage-reducing effect, means and implies that the ratio gypsum to dry cement must be kept within narrow limits. The risk that the shrinkage-reducing effect turns into a swelling effect increases markedly if for instance too high an amount of gypsum is added. Cement as well as gypsum are natural product and have thus a varying composition making it difficult to batchwise maintain a constant ratio between these. The composition as well as the properties of the final product will accordingly and to a rather large extent vary.
The complexity of above can be illustrated by following exemplification related to initial hydration of Portland cement. The main components of Portland cement are the four clinker minerals tricalciumsilicate (3 CaO.SiO
2
), dicalcium silicate (2 CaO.SiO
2
) and tricalciumaluminate (3 CaO.Al
2
O
3
) in an amount of 1-15% and tetracalciumaluminoferrite (4 CaO.Al
2
O
3
.Fe
2
O
3
), and minor amounts of magnesium, calcium, sodium, and potassium oxide (MgO, CaO, Na
2
O, K
2
O). Gypsum (CaSO
4
) is during milling of the clinker minerals added, normally in an amount of approximately 2-5% by weight calculated on said clinker minerals. A number of dissolution and hydration reactions occurs immediately after addition of water, which reaction not are known to their full extent and/or fully characterised. An initial heat emission emanating from reactions between tricalciumaluminate and gypsum occurs and results in deposition of ettringite (Ca
6
Al
2
[(OH)
4
SO4]
3
.26 H
2
O or 3 CaO.Al
2
O
3
.CaSO
4
.32 H
2
O) on the serface of the tricalciumaluminate. The ettringite is only stable as long as unreacted gypsum is present in the composition. The ettringite reacts, when all gypsum is consumed, further with unreacted tricalciumaluminate to yield the monosulphate 3 CaO.Al
2
O
3
.CaSO
4
.12 H
2
O. The reaction between tricalciumaluminate and water is spontaneous with heavy heat emission. Yielded metastable hydrates are then transformed into stable hydrates. Gypsum is, in order to retard these rapid and undesirable reactions, admixed. Formed ettringite gives a protective layer on the surfaces of the tricalciumaluminate. Gypsum per se also partly retards hydration of the tricalciumaluminate.
Frequently used cement compositions wherein the dehydration shrinkage is controlled or adjusted by addition of gypsum also include aluminate cement having an aluminate content of 35-50% and mixtures of aluminate cement and Portland cement. The ratio added gypsum to cement is normally 1:2 to 1:3.
Admixture of gypsum into a cement composition having an unknown or poorly defined aluminate and/or gypsum content is thus a matter of delicate balancing of the ratio of aluminate to gypsum. The use of a shrinkage-reducing agent having a defined and invariable composition will substantially simplify admixture and reduce variations and problems as disclosed above.
Efforts have been made to change the cement composition per se in order reduce problems with shrinkage. It is also from a number of patents and patent applications, such as EP 308950, EP 573036, JP 48043010, JP 59128240 and JP 59131552, made known that alcohols, such as secondary and tertiary polyalcohols, alkanediols, acetylenic diols and polyvinyl alcohol, optionally in combination with surface active fluorocompound and/or a silica, have a certain performance as shrinkage-reducing agents in cement compositions. Alcohols are, furthermore, used as milling additives, which is disclosed in German patent application no. 3245843.
The present invention provides quite unexpectedly a shinkage-reducing agent having properties superior to known and used agents. The agent of the present invention is an acetal, preferably a cyclic acetal of a tri or polyhydric alcohol and it is unexpectedly shown that said acetals are superior to the alcohols from which they are yielded. The shrinkage-reducing agent according to the present invention exhibits a substantial shinkage-reduction compared to said alcohols as well as compared to a control without the agent of the invention and/or corresponding alcohol.
The agent according to the present invention is intended to be used in aqueous cement comprising compositions, such as a concrete, a hydraulic cement, a mortar, a screened, a sealant composition or the like. The agent comprises at least one acetal of a tri or polyhydric alcohol in an amount of 1-99%, such as 40-99% or 50-99% by weight. The acetal is in preferred embodiments a cyclic acetal comprising at least one 1,3-dioxa group, such as a formal, and having a water solubility of at least 0.2%, such as 0.5% or 1%. Especially preferred embodiments include formals having a 1,3-dioxane structure, such as 1,3-dioxanes of trihydric alcohols which suitably are selected from the group consisting of trimethylol C
1
-C
8
alkanes. Said trimethylol C
1
-C
8
alkanes can be exemplified by trimethylolethane and trimethylpropane. Further suitable tri and polyhydric alcohols are found in the group consisting glycerol, diglycerol, ditrimethylolethane, ditrimethylolpropane, pentaerythritol, dipentaerythritol. The most preferred acetals are derived from tri or polyhydric alcohols having neopentyl structure. Acetals of carboxyfunctional alcohols, such as the trifunctional dimethylolpropionic acid having one carboxyl group and two hydroxyl groups, can also be included in the agent of the present invention. This kind of acetals can be exemplified by the cyclic acetal 5-ethyl-1,3-dioxane-5-carboxylic acid yielded from reaction between dimethylolpropionic acid and formaldehyde. The acetal of the agent can also advantageously be an acetal, such as a cyclic formal, of an alkoxylated tri or polyfunctional alcohol. The alkoxylate is suitably prepared by reaction between said alcohol and an alkylene oxide, such as ethylene oxide and propylene oxide and in special cases butylene oxide or phenylethylene oxide as well as combinations of said alkylene oxides. Diacetals, triacetals tetraacetals, etc. of alcohols having four or more hydroxyl groups can also be included in embodiments of agent according to the present invention.
The agent of the present invention comprises in the most preferred embodiments at least one acetal of glycerol, trimethylolethane, trimethylolpropane or pentaerythritol, such as 4-hydroxymethyl- 1,3-dioxolane, 5-hydroxy- 1,3-dioxane, 5-methyl-5-hydroxymethyl-1,3-dioxane, 5-ethyl-5-hydroxymethyl-1,3-dioxane or 5,5-dihydroxymethyl- 1,3-dioxane.
Liquid acetals of tri or polyhydric alcohols can suitable and in accordance with the presen

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Shrinkage-reducing agent for cement compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Shrinkage-reducing agent for cement compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Shrinkage-reducing agent for cement compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2507181

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.