Dual chamber single actuator ink jet printing mechanism

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S020000, C347S044000

Reexamination Certificate

active

06209989

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to the field of inkjet printing and in particular discloses a dual chamber single actuator inkjet printer.
BACKGROUND OF THE INVENTION
Many different types of printing have been invented, a large number of which are presently in use. The known forms of print have a variety of methods for marking the print media with a relevant marking media. Commonly used forms of printing include offset printing, laser printing and copying devices, dot matrix type impact printers, thermal paper printers, film recorders, thermal wax printers, dye sublimation printers and ink jet printers both of the drop on demand and continuous flow type. Each type of printer has its own advantages and problems when considering cost, speed, quality, reliability, simplicity of construction and operation etc.
In recent years, the field of ink jet printing, wherein each individual pixel of ink is derived from one or more ink nozzles has become increasingly popular primarily due to its inexpensive and versatile nature.
Many different techniques on ink jet printing have been invented. For a survey of the field, reference is made to an article by J Moore, “Non-Impact Printing: Introduction and Historical Perspective”, Output Hard Copy Devices, Editors R Dubeck and S Sherr, pages 207-220 (1988).
Ink Jet printers themselves come in many different types. The utilization of a continuous stream ink in ink jet printing appears to date back to at least 1929 wherein U.S. Pat. No. 1,941,001 by Hansell discloses a simple form of continuous stream electrostatic ink jet printing.
U.S. Pat. 3,596,275 by Sweet also discloses a process of a continuous ink jet printing including the step wherein the ink jet stream is modulated by a high frequency electro-static field so as to cause drop separation. This technique is still utilized by several manufacturers including Elmjet and Scitex (see also U.S. Pat, No. 3,373,437 by Sweet et al)
Piezo-electric ink jet printers are also one form of commonly utilized ink jet printing device. Piezo-electric systems are disclosed by Kyser et. al. in U.S. Pat. No. 3,946,398 (1970) which utilizes a diaphragm mode of operation, by Zolten in U.S. Pat. No. 3,683,212 (1970) which discloses a squeeze mode of operation of a piezo electric crystal, Stemme in U.S. Pat. No. 3,747,120 (1972) discloses a bend mode of piezo-electric operation, Howkins in U.S. Pat. No. 4,459,601 discloses a Piezo electric push mode actuation of the ink jet stream and Fischbeck in U.S. Pat. No. 4,584,590 which discloses a sheer mode type of piezo-electric transducer element.
Recently, thermal ink jet printing has become an extremely popular form of ink jet printing. The ink jet printing techniques include those disclosed by Endo et al in GB 2007162 (1979) and Vaught et al in U.S. Pat. No. 4490728. Both the aforementioned references disclosed ink jet printing techniques rely upon the activation of an electrothermal actuator which results in the creation of a bubble in a constricted space, such as a nozzle, which thereby causes the ejection of ink from an aperture connected to the confined space onto a relevant print media. Printing devices utilizing the electro-thermal actuator are manufactured by manufacturers such as Canon and Hewlett Packard.
As can be seen from the foregoing, many different types of printing technologies are available. Ideally, a printing technology should have a number of desirable attributes. These include inexpensive construction and operation, high speed operation, safe and continuous long term operation etc. Each technology may have its own advantages and disadvantages in the areas of cost, speed, quality, reliability, power usage, simplicity of construction operation, durability and consumables.
In any inkjet printing arrangement, especially where page width printheads are being constructed and utilized, it is important to minimize the size of the structure of each ejection nozzle. As the inkjet nozzles may be constructed in the form of multiple nozzles at a time on for example, silicon wafer, by minimizing the size of each nozzle, it is possible to fit more nozzles and hence more printheads on a single silicon wafer. It is therefore advantageous to provide for an arrangement that is of a compact size and utilizes low energy levels so as to minimize the energy requirements in the actuation of inkjet printheads.
SUMMARY OF THE INVENTION
It is an object of the present invent to provide an efficient dual chamber single vertical actuator inkjet printer.
In accordance with a first aspect of the present invention, there is provided an apparatus for ejecting fluids from a nozzle chamber comprising a nozzle chamber having at least two fluid ejection apertures defined in the walls of the chamber; a moveable paddle vane located between the fluid ejection apertures; an actuator mechanism attached to the moveable paddle vane and adapted to move the paddle vane in a first direction so as to cause the ejection of fluid drops out of a first fluid ejection aperture and to further move the paddle vane in a second alternative direction so as to cause the ejection of fluid drops out of a second fluid ejection aperture.
The actuator can comprise a thermal actuator having at least two heater elements with a first of the elements being actuated to cause the paddle vane to move in a first direction and a second heater element being actuated to cause the paddle vane to move in a second direction. The heater elements preferably have a high bend efficiency wherein the bend efficiency is defined as the youngs modulus times the coefficient of thermal expansion divided by the density and by the specific heat capacity.
The heater elements can be arranged on opposite sides of a central arm, the central arm having a low thermal conductivity.
The paddle vane and the actuator can be joined at a fulcrum pivot point, the fulcrum pivot point comprising a thinned portion of the nozzle chamber wall. The actuator can include one end fixed to a substrate and a second end containing a bifurcated tongue having two leaf portions on each end of the bifurcated tongue, the leaf portions interconnecting to a corresponding side of the paddle with the tongue such that, upon actuation of the actuator, one of the leaf portions pulls on the paddle end.
The apparatus can further comprise a fluid supply channel connecting the nozzle chamber with a fluid supply for supplying fluid to the nozzle chamber, the connection being in a wall of the chamber substantially adjacent the quiescent position of the paddle vane. The connection can comprise a slot defined in the wall of the chamber, the slot having similar dimensions to a cross-sectional profile of the paddle vane. The central arm can comprise substantially glass.
The apparatus is ideally suited for use in the form of ink jet printer. Each fluid ejection aperture preferably includes a rim defined around an outer surface thereof.
Preferably, a multiplicity of apparatuses can be arranged such that the fluid ejection apertures are grouped together spatially into spaced apart rows and fluid is ejected from the fluid ejection apertures of each of the rows in phases. The nozzle chambers can be further grouped into multiple ink colors and with each of the nozzles being supplied with a corresponding ink color.
In accordance with a second aspect of the present invention, there is provided a method of ejecting drops of fluid from a nozzle chamber having at least two nozzle apertures defined in the wall of the nozzle chambers utilizing a moveable paddle vane attached to an actuator mechanism, the method comprising the steps of actuating the actuator to cause the moveable paddle to move in a first direction so as to eject drops from a first of the nozzle apertures; and actuating the actuator causing the moveable paddle to move in a second direction so as to eject drops from a second of the nozzle apertures.


REFERENCES:
patent: 404001051 (1992-01-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Dual chamber single actuator ink jet printing mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Dual chamber single actuator ink jet printing mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dual chamber single actuator ink jet printing mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2506539

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.