Heat sink assembly with cam lock

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C254S104000, C257S719000, C361S719000, C403S374200, C174S016300

Reexamination Certificate

active

06201697

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates generally to electronic solid state and integrated circuit devices. More specifically, the present invention relates to apparatuses for dissipating heat generated by such devices.
In the electronics and computer industries, it has been well known to employ various types of electronic device packages and integrated circuit chips, such as the PENTIUM central processing unit chip (CPU) manufactured by Intel Corporation and RAM (random access memory) chips. These integrated circuit chips have a pin grid array (PGA) package and are typically installed into a socket which is soldered to a computer circuit board. These integrated circuit devices, particularly the CPU microprocessor chips, generate a great deal of heat during operation which must be removed to prevent adverse effects on operation of the system into which the device is installed. For example, a PENTIUM microprocessor, containing millions of transistors, is highly susceptible to overheating which could destroy the microprocessor device itself or other components proximal to the microprocessor.
In addition to the PENTIUM microprocessor discussed above, there are many other types of semiconductor device packages which are commonly used in computer equipment, for example. Recently, various types of surface mount packages, such as BGA (ball grid array) and LGA (land grid array) type semiconductor packages have become increasingly popular as the semiconductor package of choice for computers.
In addition, microprocessors are commonly being installed onto a circuit board which is, in turn, installed into a motherboard or other similar primary circuit board. For example, microprocessors, such as the Pentium II and the Celeron from Intel, are “processor cards” which are installed into a motherboard of a computer in similar fashion to the way a modem is installed into a motherboard. On a given processor card is typically the processor semiconductor device package itself along with any other chips or semiconductor devices that are necessary for the operation of the card, such cache chips, or the like. The processor package may be installed into the processor card via a pin grid, ball grid, land grid array and with a socket such as a ZIF or ball grid socket.
In similar fashion to the earlier semiconductor devices discussed above, the processor cards like the Pentium II and Celeron also suffer from excessive generation of heat. In particular, the processor semiconductor device package on the card generates the heat which is of most concern. A given surface of the component will, as a result, be very hot. If such heat is not properly dissipated, the processor semiconductor device package and the entire processor card or component will eventually fail. Understanding the need for heat dissipation and the connection of heat sinks, the manufacturers of processor cards typically include holes completely or partially through the processor card to facilitate the installation of heat sink assemblies thereto. Commonly, an array of at least four holes are present to receive heat sink devices.
In view of the foregoing, efforts have been made to supply a heat dissipating member, such as a heat sink, into thermal communication with the processor card and more specifically, the processor semiconductor device package. These efforts commonly employ the available holes present in the processor card to serve as anchors for the receipt of a heat sink assembly. For example, prior art attempts include an extruded heat sink assembly with a base and an array of fin members emanating upwardly therefrom. The base includes a number of through holes which correspond with the arrangement of the holes provided by the manufacturer of the processor card. The heat sink assembly is secured to the processor card by screws which are hand-tightened to the desired tension and communication between the base of the heat sink and the processor card. These heat sinks attach directly to the heat generating package or the housing containing the package, such as in a Pentium II environment.
In addition, heat sink assemblies have also been available which provide a heat sink base and associated fins along with a spring clip which engages the holes in the processor card and spans across the heat sink base to secure it in place. While relative easy to install, this attempt in the prior art is not capable of fast tension adjustment of communication between the heat sink base and surface to be cooled and requires tools for installation.
In addition to the processor cards of the prior art, processor semiconductor device packages may also be installed directly into a main circuit board, such a motherboard, in similar fashion to the older Pentium or 486 processor packages. Some manufacturers are also providing through holes in the motherboard itself to permit the attachment of heat sink assemblies as an alternative to attaching the heat sink assembly to the semiconductor package itself or the socket into which it is installed. In similar fashion to the processor cards discusses above, these processor package arrangement suffer from similar problems associated with the attachment of heat sink assemblies to avoid overheating problems.
In view of the foregoing, there is a demand for a heat sink assembly that attach to a heat generating semiconductor device package without attaching to the semiconductor package itself. In addition, there is a demand for a heat sink assembly that can quickly and easily attach to holes provided proximal to the device to be cooled without the need for tools for installation.
SUMMARY OF THE INVENTION
The present invention preserves the advantages of prior art heat sink assemblies for integrated circuit devices, such as microprocessors. In addition, it provides new advantages not found in currently available assemblies and overcomes many disadvantages of such currently available assemblies.
The invention is generally directed to the novel and unique heat sink assembly with particular application in cooling microprocessor integrated circuit devices, such as Pentium II and Celeron semiconductor device packages. The heat sink assembly of the present invention enables the simple, easy and inexpensive assembly, use and maintenance of a heat sink assembly while realizing superior heat dissipation.
A heat sink assembly, having a number of mounting holes therethrough, is installed on a heat generating surface of an electronic component for removing heat therefrom. A heat dissipating member having a base portion having a bottom surface and an upper surface with heat dissipating elements connected thereto is provided. The bottom surface is adapted to be matable in flush thermal communication with a heat generating surface of an electronic component. A cam assembly includes a support body as well as a connection body that is pivotally connected thereto about a pivot axis. At least one leg is connected to the support body with a retention member on its free end. The leg is routed through a selected one of the base apertures and one of the mounting holes corresponding thereto. The connection body is rotated about the pivot axis to provide a camming action against the top surface of the base portion of the heat dissipating member to maintain the heat dissipating member in flush thermal communication with the heat generating surface of the electronic component. The retention member on the leg prevents the leg from being removed from the apertures in which is resides thus maintaining the connection body in communication with the top of the base of the heat dissipating member.
In operation, the legs of the cam lock assembly are installed through selected base apertures and corresponding mounting holes in the electronic component. The free ends of the legs carry retention members which pass through the holes and apertures to provide stop members on the opposing side of the circuit board or electronic component. The armature emanating from the connection body is manipulated to rotate the connection body about the pivot a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Heat sink assembly with cam lock does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Heat sink assembly with cam lock, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Heat sink assembly with cam lock will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2497886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.