Thermally-Inhibited pregelatinized non-granular starches and...

Sugar – starch – and carbohydrates – Processes – Carbohydrate manufacture and refining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C127S029000, C127S032000, C127S067000, C127S071000, C426S658000, C426S661000

Reexamination Certificate

active

06261376

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to pregelatinized non-granular starches and flours that are inhibited and to a process for their preparation.
Native starch granules are insoluble in cold water. When native granules are dispersed in water and heated, however, they become hydrated and swell. With continued heating, shear, or conditions of extreme pH, the gelatinized granules fragment and the starch molecules are dispersed in the water, i.e., solubilized.
Pregelatinized starches (i.e., cold-water-soluble or dispersible starches) are typically prepared by thermal, chemical, or mechanical gelatinization. The term “gelatinized” or “cooked” starch refers to swollen starch granules which have lost their polarization crosses and which may or may not have lost their granular structure.
The thermal processes generally used to prepare such starches include batch cooking, autoclaving, and continuous cooking processes in a heat exchanger or jet-cooker. The thermal dispersion of a granular starch in water involves a complex mechanism. See the discussion at pp. 427-444 in Chapter 12, by Kruger & Murray of
Rheology
&
Texture in Food Quality
, Edited by T. M. DeMan, P. W. Voisey, V. F. Rasper, and D. W. Stanley (AVI Publishing, Westport, Conn. 1976), at pp. 449-520 in Chapter 21 of
Starch: Chemistry
&
Technology
, Vol. 2, edited by R. Whistler (Academic Press, New York, N.Y. 1967) and at pp. 165-171 in Chapter 4 by E. M. Osman of
Food Theory and Applications
, edited by P. C. Paul and H. H. Palmer (John Wiley & Sons, Inc., New York, N.Y. 1972). The process begins at the gelatinization temperature, as water is absorbed into the starch granules, and continues as the hydrated granules swell and disrupt into smaller granular fragments until the starch finally approaches a molecular dispersion. The viscosity of the cook changes significantly during this process, increasing as the granules hydrate and swell and decreasing as the granular fragments are reduced in size. An appropriate amount of shear aids in breaking down the swollen granular fragments to give a molecular dispersion without substantial molecular degradation.
Depending on the starch base, the pregelatinized starch will exhibit specific texture and viscosity characteristics after the starch is dispersed in water. Starches containing amylose will exhibit a gel-like non-cohesive texture. Starches containing high levels of amylose, for example, over 40%, will set to a very firm gel. Unmodified amylose-containing starches pregelatinized by drum drying or extrusion frequently have a pulpy texture when dispersed in water. Starches which contain mainly amylopectin, i.e., waxy starches, do not provide the same gel characteristics as amylose-containing starches. The dispersions of unmodified pregelatinized amylopectin-containing starches exhibit a cohesive and runny texture when dispersed in water.
The texture can be improved if the waxy starches are chemically crosslinked prior to pregelatinization. The crosslinks reinforce the associative hydrogen bonds holding the granules together, inhibit the swelling and hydration of the starch granules during pregelatinization, and consequently, the crosslinked starch granules remain intact. When pregelatinized powders of the chemically crosslinked starches are dispersed in water, the dispersions have a non-cohesive and salve-like texture, which is described as heavy or short.
It is desirable for a pregelatinized starch to be bland in flavor. Many starches such as corn, sorghum, and wheat contain small quantities of unsaturated fatty acids. The fatty acids may develop rancid flavors due to air oxidation. In addition, the proteins present give the starches an undesirable cereal taste. Certain starches, such as corn and waxy maize, are not used in thickened food compositions due to “woody” or “popsicle stick” off-flavors resulting from pregelatinization. See U.S. Pat. No. 4,303,451 (issued Dec. 1, 1981 to W. C. Seidel) which discloses a method for preventing the development of “woody” off-flavors in pregelatinized waxy maize starches. The starch granules are heated, prior to gelatinization, at about 120-200° C. for 0.1-24 hours. The heating time must be insufficient to effect dextrinization but sufficient to prevent formation of woody off-flavors during pregelatinization. The texture and flavor of corn, wheat, rice and sago were modified by this heat treatment, but these starches gave inconsistent and non-reproducible results in food compositions (see Col. 2, lines 14-18).
In some applications, chemically modified starches and flours are unacceptable or undesirable. Thus, there is a need for unmodified pregelatinized non-granular starches which have the textural properties of chemically crosslinked pregelatinized non-granular starches and which are substantially free of off tastes.
SUMMARY OF THE INVENTION
The present invention provides thermally-inhibited, pregelatinized non-granular starches and flours. These starches and flours are pregelatinized using a process that ruptures the starch granules. The starches and flours are also thermally inhibited which causes the starch or flour to have the viscosity and textural characteristics of a chemically crosslinked starch, but without the use of chemical reagents. The thermally-inhibited, pregelatinized non-granular starches or flours are dispersible in cold water and, if sufficiently inhibited, possess a non-cohesive, salve-like texture if the starch is an amylopectin-containing starch or a gel-like texture if the starch is an amylose-containing starch.
The starches and flours may be pregelatinized first and subsequently thermally inhibited or they may be thermally inhibited first and subsequently pregelatinized.
The thermal inhibition process comprises the steps of (a) optionally pH adjusting the granular or non-granular starch or flour to a pH of about 7.0 or above; (b) dehydrating the starch or flour until it is anhydrous or substantially anhydrous; and (c) heat treating the dehydrated starch or flour at a temperature and for a period of time sufficient to inhibit, the starch or flour and preferably render it non-cohesive. As used herein, “substantially anhydrous” means containing less than 1% moisture by weight.
If the pregelatinization is performed first, a granular starch or flour is slurried in water in a ratio of 2.0 to 2.5 parts water to 1.0 part starch and preferably the pH is adjusted to neutral or greater by the addition of a base. As used herein, “neutral” covers the range of pH values around pH 7 and is meant to include from about pH 6.5 to about pH 7.5. The slurry is pregelatinized using known pregelatinization procedures which disrupt the granular structure and then dried to about 2-15% moisture. The dried pregelatinized non-granular starch or flour is then thermally inhibited by dehydrating the pregelatinized non-granular starch or flour to anhydrous or substantially anhydrous and then heat treating the dehydrated pregelatinized non-granular starch.
Alternatively, if the starch or flour is thermally inhibited prior to pregelatinization, the granular starch or flour is slurried in water, optionally the pH is adjusted to neutral or greater by the addition of a base, and the starch or flour is dried to about 2-15% moisture. The dried granular starch or flour is then thermally inhibited by dehydrating the starch or flour to anhydrous or substantially anhydrous and then heat treating the dehydrated starch. The resulting granular thermally-inhibited starch is then pregelatinized using known pregelatinization procedures which disrupt the granular structure.
The dehydration may be a thermal dehydration or a non-thermal dehydration. The thermal dehydration is carried out by heating the starch in a convention oven or a microwave oven, or any other heating device for a time and at a temperature sufficient to reduce the moisture content to less than 1%, preferably 0%. Examples of non-thermal dehydrating methods include extracting the water from the granular starch or pregelatinized starch using a hydrophilic solvent such as an al

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Thermally-Inhibited pregelatinized non-granular starches and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Thermally-Inhibited pregelatinized non-granular starches and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Thermally-Inhibited pregelatinized non-granular starches and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2488662

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.