Steam turbogenerator set having a steam turbine and a driven...

Power plants – Motive fluid energized by externally applied heat – Process of power production or system operation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S657000

Reexamination Certificate

active

06240730

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a steam turbogenerator set having a steam turbine unit and a driven machine unit connected thereto for producing electrical power. The invention also relates to a method for operation of the steam turbogenerator set.
Turbogenerator sets are generally used in order to feed an electrical network having a frequency which is 50 Hz (or 60 Hz). At high ratings (around 30 MVA or more), it is economical to operate the steam turbine at speeds of 3000 (or 3600) revolutions per minute when using two-pole generators. However, for lower ratings, higher speeds of more than 3000 to 16,000 revolutions per minute are more economical for the turbine, depending on the rating. In that case, a gearbox is required to reduce the speed between the steam turbine which rotates at high speed, and the generator which rotates to match the desired electrical power frequency.
In that case, particular problems occur with the lubrication and cooling of the bearings and gearbox.
In the gearbox, not only do bearings for gearbox shafts require special lubrication but, in particular, heavily loaded gearbox teeth of mutually engaging tooth edges must also be carefully lubricated and cooled. The high rotation speeds and loads in each case demand a specific coolant and lubricant, for which purpose, until now, only oils have been available, in practice.
Conventionally, a steam turbogenerator set has an oil circuit which essentially carries out three tasks:
Firstly, the oil is used as a lubricant and coolant for the bearings of the steam turbine and generator. Secondly, the control valves of the steam turbine are operated by actuating cylinders using oil for hydraulic purposes. Thirdly, the oil is used to cool and lubricate the gearbox. Heat losses which occur in each case are emitted to the oil circuit and are carried away to an oil/water heat exchanger. Overall, relatively large amounts of oil are required to carry out those three tasks. In such a case, the ratio of lubricating oil: control oil: gearbox oil is about 1:6:2.
Those amounts of oil can lead to a number of problems. In the event of leakages in the oil circuit, there is a risk of the oil which emerges contaminating the surrounding area. That necessitates precautionary measures such as oil trays and walls surrounding oil containers. Furthermore, emerging oil represents a serious fire hazard. If the oil comes into contact with parts of the turbine at temperatures up to 500° C., there is a high probability of ignition. Alternative liquids which can be used are difficult to ignite but are generally toxic. Complex and expensive measures are required for steam turbine shaft bearings, particularly for steam turbogenerator sets with an axial stream outlet flow, to ensure that no oil can enter the outlet stream from the turbine. That would result in the steam circuit being contaminated by an extraneous medium, which could lead to a wide range of defects.
The amount of oil in the oil circuit can admittedly be reduced considerably if actuating cylinders operated hydraulically by oil are dispensed with and a change is made to a different medium (which then requires its own circuit) or different drive principles for the control valves (for example linear drives which, in some circumstances, likewise require cooling). However, that does not avoid impurities occurring in the steam outlet as a result of bearing oil emerging from the turbine, or oil emerging into the surrounding area. A high level of technological complexity is required for that purpose, as is implicitly evident from numerous patent applications (for example European Patent Application 0 306 634 A2, International Publication No. WO 94/01713 and German Published, Non-Prosecuted Patent Application DE 196 06 088 A1). That problem can be solved by shafts with magnetic bearings (for example in German Patent DE 42 27 280 C1, corresponding to U.S. patent application Ser. No. 08/390,107, filed Feb. 17, 1995, or German Patent DE 31 46 354 C2) or by other magnetic bearings with elements using permanent magnets and/or superconductors (German Published, Non-Prosecuted Patent Application DE 44 44 587 A1, corresponding to U.S. patent application Ser. No. 08/876,655, filed Jun. 16, 1997), although those likewise involve complexity. However, no promising substitute which operates without any coolant is yet known for the gearbox.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a steam turbogenerator set having a steam turbine unit and a driven machine unit connected thereto for producing electrical power, and a method for operation of the steam turbogenerator set, which overcome the hereinafore-mentioned disadvantages of the heretofore-known devices and methods of this general type and which avoid difficulties caused by lubricant and/or coolant.
The invention in this case is primarily based on avoiding the dangers and difficulties resulting from oil by using actuating cylinders, which use water for hydraulic purposes, for the valves which control or regulate the steam supply, or other control elements, that operate without oil, for those valves. The same applies to the oil-free bearings for the generators and for the equipment in a driven machine unit (generators, pumps, compressors, etc.). In particular, the invention provides for the use of linear motors as control drives for the valves. Water-cooled bearings are suitable in any case for the driven machine unit, provided the amounts of water required for lubrication and cooling are fed into the bearings at an adequate pressure.
The invention is also based on a gearbox being required only if the rotational speed of the shaft which is driven by the steam turbine is reduced or increased. However, if it is possible to operate the steam turbine and the driven machine at the same rotational speed, then there is no need for a gearbox and the problems associated with cooling of the gearbox do not occur. In order to ensure that electrical power at a predetermined frequency is fed into an electrical network or to a load, a frequency converter, which is connected to the generator, is used to match the generator rotational speed (that is to say the rotational speed of the high-speed steam turbine) to the lower frequency of the electrical power or of the network. If the driven machine unit contains pumps, compressors or other machines, then there is likewise no need for a gearbox, provided these corresponding machines are constructed for the high rotational speed of the steam turbine. Thus, in particular, the steam turbine of the steam turbine unit and the generator of the driven machine unit can be connected to one another through a coupling or through flanges.
Finally, the invention is based on the capability of using water as a lubricant and coolant in the steam turbine unit, and then of avoiding the risk of fire associated with the use of oil, and the risk of environmental damage caused by leakages. Thus, in practice, it is possible to dispense with the use of oil and the like throughout the entire turbogenerator set. Furthermore, no extraneous media then enter the outlet steam flow from the turbine if the bearing is located in an axial outlet flow, and the water for lubrication and cooling is taken from the water circuit of the steam power station.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for operating a steam turbogenerator set, which comprises providing a steam turbine unit having a steam turbine and a shaft bearing; providing a driven machine unit having a generator for producing electrical power; providing a shaft having a first shaft part borne in the shaft bearing of the steam turbine unit and a second shaft part with oil-free bearings in the driven machine unit; supplying the steam turbine unit with steam through valves driven without oil; rotating the first shaft part with the steam turbine; transmitting the same rotation of the shaft to the generator without an interposition of gearing or a gearbo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Steam turbogenerator set having a steam turbine and a driven... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Steam turbogenerator set having a steam turbine and a driven..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Steam turbogenerator set having a steam turbine and a driven... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2485973

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.