Method of determining performance characteristics of...

Measuring and testing – Surface and cutting edge testing – Roughness

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S104000, C073S007000

Reexamination Certificate

active

06293139

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to polishing pads for polishing semiconductor wafers, and more particularly to determining performance characteristics of a production lot of polishing pads using discriminant analysis.
Semiconductor wafers are generally prepared from a single crystal ingot sliced into individual wafers. The wafers are subjected to several processing operations to reduce the thickness of the wafer, remove damage caused by the slicing operation, and create a highly reflective surface. In conventional wafer shaping processes, a lapping operation is performed on the front and back surfaces of the wafer using an abrasive slurry and a set of rotating lapping plates. The lapping operation reduces the thickness of the wafer to remove surface damage induced by the slicing operation and to make the opposing side surfaces of each wafer flat and parallel. Upon completion of the lapping operation, the wafers are subjected to a chemical etching operation to reduce further the thickness of the wafer and remove mechanical damage produced by the prior processing operations. One side surface of each wafer (often called the “front” side of the wafer) is then polished using a polishing pad, a colloidal silica slurry (polishing slurry) and a chemical etchant to ensure that the wafer has a highly reflective, damage-free surface. This invention relates in particular to the polishing process.
Semiconductor wafers used as starting materials for the fabrication of integrated circuits must meet certain surface flatness requirements. Such wafers must be particularly flat to print circuits on them by, for example, an electron beam-lithographic or photolithographic process. Wafer flatness in the focal point of the electron beam delineator or optical printer is important for uniform imaging in the electron beam-lithographic and photolithographic processes. The flatness of the wafer surface directly influences device line width capability, process latitude, yield and throughput. The continuing reduction in device geometry and increasingly stringent device fabrication specifications force manufacturers of semiconductor wafers to prepare increasingly flatter wafers. Wafers can be characterized for flatness in terms of a global flatness variation parameter (for example, total thickness variation (“TTV”)) or in terms of a local site flatness variation parameter (e.g., Site Total Indicated Reading (“STIR”) or Site Focal Plane Deviation (“SFPD”)) as measured against a reference plane of the wafer (e.g., Back Reference Center Focus (“SBIR”) or Site Best Fit Reference Plane (“SFQR”)). A more detailed discussion of the characterization of wafer flatness can be found in F. S HIMURA, Semiconductor Silicon Crystal Technology 191-195 (Academic Press 1989).
Because a wafer's flatness is of paramount importance, production variables affecting wafer flatness are closely monitored. The quality of the polishing pad used to polish the wafer, for example, directly affects the flatness characteristics of the polished wafer. Therefore, an accurate assessment of the polishing pad quality, and particularly identification of bad lots, is important to semiconductor wafer production. Historically, polishing pad performance between production lots has been variable, due to minor variations in the supplier's manufacturing process. In contrast, within a production lot, the quality of the pads is typically consistent because each pad is stamped from the same raw material. Therefore, each production lot of polishing pads must be separately assessed to determine its quality and usefulness. To assess the quality of a particular production lot of wafers, several pads must be tested on Grade I semiconductor material to assess the overall quality of the pad. Grade I semiconductor material is expensive to manufacture, and its use in testing pad quality places the polished semiconductor material at risk of flatness degradation which may render the wafer unsuitable for use. Therefore, any reduction in the amount of Grade I material placed at risk during the testing process is beneficial.
Assessing the quality of a production lot of wafers traditionally has been a qualitative task, based upon the wafer shape and other flatness measures. According to the prior methodology, once a current production lot of good polishing pads is exhausted, a new production lot of pads is used in the wafer polishing process. When these new pads are installed on the polishers, their quality is unknown. As the new pads are broken in, if the quality of wafer flatness remains high, the pads are considered good and not analyzed further. Alternately, if wafer quality appears to suffer and substandard polishing pads are suspected, pad quality is evaluated. By evaluating the flatness of the wafers with different flatness measures, as described above, the questionable production lot is characterized as bad or marginal. This in-use type evaluation process is time consuming and costly. Because the pads are used in production before their quality is appreciated, they place many Grade I wafers at risk of flatness degradation and possible loss before a problem is identified. This problem is exacerbated if quality problems associated with the pads are difficult to detect and go undetected for significant periods. Once the lot quality is determined to be bad, the lot is rejected and returned to the pad manufacturer. Marginal production lots are subject to further pad testing and further destruction of Grade I material until a determination of lot quality can be made. Because this process is time consuming and subjects many Grade I wafers to risk of flatness degradation and potential loss, a more efficient and less costly methodology for determining pad quality is necessary.
SUMMARY OF THE INVENTION
Among the several objects of this invention may be noted the provision of an improved methodology that reduces how much Grade I semiconductor material is placed at risk of flatness degradation while testing polishing pad quality; the provision of such a methodology that speeds the reaction time to identify poorly performing pad production lots; the provision of such a methodology that increases the accuracy of the determination of pad production lot quality; the provision of such a methodology that decreases the number of polishers required to determine pad quality; the provision of such a methodology that employs a directive, proactive, methodology which actively determines the quality of a production lot of polishing pads; the provision of such a methodology that uses quantitative, rather than qualitative, measurements to determine pad production lot quality; and the provision of such a methodology that creates an easily understandable grading system, allowing quick comparison of production lot quality to predetermined standards.
Generally, a testing and analyzing method for determining the performance characteristics of a production lot of polishing pads is disclosed. The first step requires polishing a plurality of semiconductor wafers with a selected number of polishing pads from the production lot of polishing pads. At least a portion of the surface area of each of the plurality of semiconductor wafers is divided into a plurality of sites. At least one wafer characteristic from each site is measured. The wafer characteristic from each site is incorporated into a discriminant function selected to predict the performance characteristics of a production lot of polishing pads by the quantitative level of the data obtained from a plurality of semiconductor wafers polished by the selected number of polishing pads.
Other objects and features will be in part apparent and in part pointed out hereinafter.


REFERENCES:
patent: 4417478 (1983-11-01), Jon et al.
patent: 5005205 (1991-04-01), Ellozy et al.
patent: 5010578 (1991-04-01), Siener et al.
patent: 5317901 (1994-06-01), Khan
patent: 5320101 (1994-06-01), Faupel et al.
patent: 5377451 (1995-01-01), Leoni et al.
patent: 5450326 (1995-09-01), Black
patent: 5508915 (1996-04-01), Tsao et al.
patent

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of determining performance characteristics of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of determining performance characteristics of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of determining performance characteristics of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2485167

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.