Colorant stabilizers

Compositions: coating or plastic – Coating or plastic compositions – Marking

Utility Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S031860, C106S499000

Utility Patent

active

06168655

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a family of colorant stabilizers. The colorant stabilizers, according to the present invention, are capable of stabilizing a colorant when it is exposed to electromagnetic radiation. The colorant stabilizers enable the production of an ink set wherein each ink of the ink set, regardless of color, possesses substantially similar light fastness properties.
BACKGROUND OF THE INVENTION
A major problem with colorants is that they tend to fade when exposed to electromagnetic radiation such as sunlight or artificial light and the like. It is believed that most of the fading of colorants when exposed to light is due to photodegradation mechanisms. These degradation mechanisms include oxidation or reduction of the colorants depending upon the environmental conditions in which the colorant is placed. Fading of a colorant also depends upon the substrate upon which they reside.
Product analysis of stable photoproducts and intermediates has revealed several important modes of photodecomposition. These include electron ejection from the colorant, reaction with ground-state or excited singlet state oxygen, cleavage of the central carbon-phenyl ring bonds to form amino substituted benzophenones, such as triphenylmethane dyes, reduction to form the colorless leuco dyes and electron or hydrogen atom abstraction to form radical intermediates.
Various factors such as temperature, humidity, gaseous reactants, including O
2
, O
3
, SO
2
, and NO
2
, and water soluble, nonvolatile photodegradation products have been shown to influence fading of colorants. The factors that effect colorant fading appear to exhibit a certain amount of interdependence. It is due to this complex behavior that observations for the fading of a particular colorant on a particular substrate cannot be applied to colorants and substrates in general.
Under conditions of constant temperature it has been observed that an increase in the relative humidity of the atmosphere increases the fading of a colorant for a variety of colorant-substrate systems (e.g., McLaren, K., J.
Soc. Dyers Colour,
1956, 72, 527). For example, as the relative humidity of the atmosphere increases, a fiber may swell because the moisture content of the fiber increases. This aids diffusion of gaseous reactants through the substrate structure.
The ability of a light source to cause photochemical change in a colorant is also dependent upon the spectral distribution of the light source, in particular the proportion of radiation of wavelengths most effective in causing a change in the colorant and the quantum yield of colorant degradation as a function of wavelength. On the basis of photochemical principles, it would be expected that light of higher energy (short wavelengths) would be more effective at causing fading than light of lower energy (long wavelengths). Studies have revealed that this is not always the case. Over 100 colorants of different classes were studied and found that generally the most unstable were faded more efficiently by visible light while those of higher lightfastness were degraded mainly by ultraviolet light (McLaren, K., J.
Soc. Dyers Colour,
1956, 72, 86).
The influence of a substrate on colorant stability can be extremely important. Colorant fading may be retarded or promoted by some chemical group within the substrate. Such a group can be a ground-state species or an excited-state species. The porosity of the substrate is also an important factor in colorant stability. A high porosity can promote fading of a colorant by facilitating penetration of moisture and gaseous reactants into the substrate. A substrate may also act as a protective agent by screening the colorant from light of wavelengths capable of causing degradation.
The purity of the substrate is also an important consideration whenever the photochemistry of dyed technical polymers is considered. For example, technical-grade cotton, viscose rayon, polyethylene, polypropylene, and polyisoprene are known to contain carbonyl group impurities. These impurities absorb light of wavelengths greater than 300 nm, which are present in sunlight, and so, excitation of these impurities may lead to reactive species capable of causing colorant fading (van Beek, H. C. A.,
Col. Res. Appl.,
1983, 8(3), 176).
Therefore, there exists a need for methods and compositions which are capable of stabilizing a wide variety of colorants from the effects of both sunlight and artificial light.
SUMMARY OF THE INVENTION
The present invention addresses the needs described above by providing compositions and methods for stabilizing colorants against radiation including radiation in the visible wavelength range.
The present invention also relates to colorant compositions having improved stability, wherein the colorant is associated with a colorant stabilizer. In one embodiment, the colorant stabilizer of the present invention is an aryliminealkene having the following general formula:
wherein
R
1
is hydrogen, an alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl group, or substituted aryl group;
R
2
is hydrogen, an alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl group, or substituted aryl group;
R
3
is hydrogen, an alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl group, or substituted aryl group;
R
4
is hydrogen, an alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, or substituted aryl group; and
R
5
is an aryl, heteroaryl, polyalkene, or substituted aryl group;
wherein R
1
, R
2
, or R
4
is an aryl, heteroaryl, or substituted aryl group.
Desirably, the alkene group is in the trans configuration.
In another embodiment of the present invention, heavy atoms are added to conventional dyes to stabilize the dyes. These heavy atoms include Group VII ions including iodide ions. It has further been determined that the counterion is desirably a large ion with a relatively low charge density. These counterions should be sodium or larger. The counterions also include relatively large organic counterions such as tetramethylammonium.
In yet another embodiment of the present invention, highly effective dye stabilizers include derivatives of phenols with the following general formula:
wherein
R
1
is iodine, or an alkyl group having between 1 and 5 carbon atoms;
R
2
is an iodine, or an alkyl group having between 1 and 5 carbon atoms;
R
3
is iodine, or an alkyl group having between 1 and 5 carbon atoms; and
R
4
is a sugar, polyhydroxy compound, sulfonic acid salt compound, carboxylic acid salt compound, polyether compound, or hydrogen, wherein the sugar includes, but is not limited to, glucose, fructose, polyether sugars, monosaccharides, polysaccharides, cyclodextrins, including but not limited to, &agr;-cyclodextrin, &bgr;-cyclodextrin, &ggr;-cyclodextrin, hydroxypropyl &bgr;-cyclodextrin, hydroxyethyl &bgr;-cyclodextrin, hydroxyethyl &agr; cyclodextrin, carboxymethyl &agr; cyclodextrin, carboxymethyl &bgr; cyclodextrin, carboxymethyl &ggr; cyclodextrin, octyl succinated &agr; cyclodextrin, octyl succinated &bgr; cyclodextrin, octyl succinated &ggr; cyclodextrin and sulfated &bgr; cyclodextrin and sulfated &ggr;-cyclodextrin. In particular, the triiodophenols and trimethylphenols and the water soluble derivatives thereof are particularly effective in stabilizing a wide variety of dyes.
In yet another embodiment, the colorant stabilizer of the present invention is a reducing agent. The reducing agent includes, but is not limited to, sodium thiosulfate (Na
2
S
2
O
3
), sodium sulfite (Na
2
SO
3
), cysteine, sodium nitrite, sodium phosphite, and citric acid. A desired reducing agent is sodium thiosulfate. In this embodiment, the stabilizer may be admixed with the colorant, or it may be applied to a substrate to which the colorant will be applied. Although the reducing agent alone stabilizes a colorant, it is desirable that the reducing agent is combined with one or more of the above stabilizers.
In another embodiment, the colorant stabilizer of the present invention is a molecular includant having a chemic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Colorant stabilizers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Colorant stabilizers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Colorant stabilizers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2481945

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.