Activating egg extracts and method of preparation

Chemistry: molecular biology and microbiology – Animal cell – per se ; composition thereof; process of... – Culture medium – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S581000, C424S582000

Reexamination Certificate

active

06245567

ABSTRACT:

FIELD ON THE INVENTION
This invention concerns products, methods and apparatus for analysis of non-dividing mammalian cell nuclei, such as human fetal cell nuclei and mammalian sperm cell nuclei.
BACKGROUND OF THE INVENTION
Jackson,
Seminars in Perinatology
15:49 (1991), describes various procedures for prenatal diagnosis, including procedures to diagnose diseases. These procedures involve analysis of the DNA present in early embryonic stages. Specifically, Jackson mentions the use of a polymerase chain reaction to amplify genes, and the possibility of testing oocytes by polar body assay. According to Jackson:
“There are other conceivable embryo biopsy approaches for prenatal diagnosis. The trophectoderm may be obtained at later, multicellular embryonic stages when more cells might be obtained and induced to replicate in tissue culture. . . . Another approach to early prenatal diagnosis is the recovery of fetal cells in the maternal circulation. This tantalizing possibility for a non-invasive method has been pursued for several years by groups in both the United States and the United Kingdom. Both groups originally sought placental immunologic markers for identification and recovery of these cells. Several trophoblast antibodies were developed, some of which appeared to have relative specificity for the fetal cell. After sporadic reports of success, recent articles appear to indicate that these markers are insufficiently specific and actually are attached to maternal cells frequently enough to make this approach unworkable to date.”
Bianchi et al.,
Proc. Natl. Acad. Sci. USA
87: 3279 (1990), describe isolating fetal nucleated erythrocytes in maternal blood using a monoclonal antibody against the transferrin receptor. They state that they “were successful in detecting the Y chromosomal sequence in 75% of male-bearing pregnancies, demonstrating that it is possible to isolate fetal gene sequences from cells in maternal blood.”
According to Roberts,
Science
18:378 (1991), two procedures available for prenatal screening are chorionic villus sampling (CVS) and amniocentesis. Both these procedures have problems involving waiting time and risk of miscarriage, “estimated at 1% to 2% for CVS and 0.5% for amniocentesis.” Supra. Roberts also points out a procedure for analyzing nuclear DNA directly when cells are in interphase.
Lohka and Masui,
Science
220:719 (1983), describe inducing the formation of a nuclear envelope in demembraned sperm of
Xenopus laevis
using a cell-free preparation from the cytoplasm of activated eggs of
Rana pipiens.
Leno and Laskey,
J. Cell Biology
112:557, (1991), performed experiments using erythrocytes from adult chickens. According to Leno:
“Coppock et al. (1989) [Supra] have reported that a pretreatment with trypsin was required for nuclear decondensation and DNA replication of
Xenopus erythrocyte
nuclei in egg extract. Trypsin pretreatment was not required for nuclear decondensation and DNA replication in our extracts.”
Gordon et al.,
Experimental Cell Research
157:409 (1985), describe “a system for the activation of human sperm using cell-free extracts from
Xenopus laevis
eggs.” Similarly, an abstract, by Brown et al.,
J. Cell Biology
99:396a (1984), indicate that nuclear changes which occur during the early phases of fertilization can be stimulated by injecting isolated sperm nuclei into heterologous recipient eggs, or by incubating frog sperm nuclei in the presence of cell-free extracts from frog eggs. They state that they found human sperm can be activated in vitro using
Xenopus laevis
frog egg extract to stimulate the early events of nuclear activation, including chromatin decondensation, nuclear enlargement and DNA synthesis.
SUMMARY OF THE INVENTION
The present invention concerns products and methods useful for causing non-dividing nuclei to activate (e.g., go through one or more steps of nuclear activation). The featured products and methods are particularly useful for activating human fetal cell nuclei and mammalian sperm cell nuclei. “Activation” of a non-dividing cell nucleus refers to one or more of the following activities: nuclear swelling, nucleic acid replication, and nuclear entrance into mitosis thereby producing metaphase chromosomes (arrested metaphase chromosomes or replicating chromosomes). Complete activation refers to activation wherein all of the activities occur.
Nucleic acids can be analyzed at the different stages of activation, brought about by the present invention, to obtain useful information such as information about nucleic acid structure, sequences, number of copies of a nucleic acid sequence, and nuclear location of a nucleic acid. Analysis of nucleic acids can be carried out using techniques known in the art such as in situ hybridization and karyotype analysis of metaphase chromosomes.
One particular advantage of the present invention is its use in prenatal diagnosis. Activation of fetal cell nuclei can be used to facilitate prenatal diagnosis of various human conditions. Nuclei from of all types of human fetal cells including blood cells (such as red cells, white cells and other circulating cells of the fetus), as well as other types of fetal cells such as cells found in the amniotic fluid, or cells derived from the placenta (such as trophoblasts or syncytial trophoblasts), can be activated using the described products and methods. Preferably, the fetal cells to be activated are recovered from the blood or tissue of a pregnant woman rather than directly from the fetus or placenta, thereby decreasing the likelihood of discomfort or harm to the fetus and/or mother by the diagnosis procedure.
“Activation activity” refers to the ability of an agent to bring about nuclear activation. Examples of agents which bring about nuclear activation include a non-activated cytostatic factor (CSF) extract and activating egg extract. Enhancement of activation activity refers to an increase in the activation activity which is brought about by an agent which causes nuclear activation. Examples of agents which enhance nuclear activation caused by an activating agent include CSF extract, purified components thereof, and proteases.
Activation activity can be measured using techniques known in the art. Such techniques include microscopic visualization of swollen nuclei, incorporation of labelled nucleic acid precursors into newly synthesized nucleic acid, microscopic visualization of metaphase chromosomes, and in situ hybridization.
The featured methods include pretreating a non-dividing human nucleus to enhance its ability to activate, bringing about complete or partial nuclear activation, and both bringing about and analyzing such nuclear activation on a microchamber microscope slide. Other useful methods disclosed include preparing products such as an activating egg extract, a CSF extract, and a modified CSF extract; the use of a protease pretreatment step in the activation of sperm; an activation assay; a retroviral integration assay; and a procedure for cloning whole animals using activated nuclei.
The featured products including activating egg extract, CSF extract, kits containing these extracts, and a microchamber microscope slide useful in analyzing nuclear activation, are also claimed as part of the present invention.
The nucleus of a non-dividing fetal cell or a sperm cell is normally small, has condensed chromatin, and does not replicate or divide. Specific nucleic acid sequences in the nucleus of these cells can be stained by fluorescent in situ hybridization methods if the target nucleic acid sequence is accessible to the probe. However, the small size of the nucleus can affect the accessibility of particular nucleic acid sequences and the amount of information obtained from successful hybridization. Moreover, hybridization signals successfully obtained are limited in spacial resolution by the size of the nucleus. As a result, obtaining a reliable fluorescent signal can be difficult and the information obtained by fluorescent staining generally indicates only the presence or absence of accessible

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Activating egg extracts and method of preparation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Activating egg extracts and method of preparation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Activating egg extracts and method of preparation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2468575

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.