Midair collision avoidance system

Communications: directive radio wave systems and devices (e.g. – Aircraft collision avoidance system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C342S030000, C342S036000, C342S046000, C342S049000

Reexamination Certificate

active

06262679

ABSTRACT:

II. BACKGROUND OF THE INVENTION
The present invention relates generally to the field of avionics for airborne collision avoidance systems (CAS).
Spurred by the collision of two airliners over the Grand Canyon in 1956, the airlines initiated a study of collision avoidance concepts. By the late 1980's, a system for airborne collision avoidance was developed with the cooperation of the airlines, the aviation industry, and the Federal Aviation Administration (FAA). The system, referred to as Traffic Alert and Collision Avoidance System II (TCAS II) was mandated by Congress to be installed on most commercial aircraft by the early 1990's. A chronology of the development of airborne collision avoidance systems can be found in “Introduction to TCAS II,” printed by the Federal Aviation Administration of the U.S. Department of Transportation, March 1990.
The development of an effective airborne CAS has been the goal of the aviation community for many years. Airborne collision avoidance systems provide protection from collisions with other aircraft and are independent of ground based air traffic control. As is well appreciated in the aviation industry, avoiding such collisions with other aircraft is a very important endeavor. Furthermore, collision avoidance is a problem for both military and commercial aircraft alike. In addition, a large, simultaneous number of TCAS interrogations from close-in formation aircraft members generate significant radio frequency (RF) interference and could potentially degrade the effectiveness of maintaining precise position/separation criteria with respect to other aircraft and obstacles. Therefore, to promote the safety of air travel, systems that avoid collision with other aircraft are highly desirable.
Referring to
FIG. 1
, there is shown a block diagram of a conventional TCAS system. Shown in
FIG. 1
are TCAS directional antenna
10
, TCAS omni-directional antenna
11
, and TCAS computer unit
12
, which includes receiver
12
A, transmitter
12
B, and processor
12
C. Also shown are aural annunciator
13
, traffic advisory (TA) display
14
, and resolution advisory (RA) displays
15
. Alternatively, the TA and RA displays are combined into one display (not shown). The transponder is comprised of transponder unit
16
A, control panel
16
B, and transponder antennas
16
C and
16
D. The TCAS and transponder operate together to function as a collision avoidance system. Those skilled in the art understand that this is merely illustrative of a conventional TCAS. For example, many other configurations are possible such as replacing omni-directional antenna
11
with a directional antenna as is known to those skilled in the art. The operation of TCAS and its various components are well known to those skilled in the art and are not necessary for understanding the present invention.
In a TCAS system, both the interrogator and transponder are airborne and provide a means for communication between aircraft. The transponder responds to the query by transmitting a reply that is received and processed by the interrogator. Generally, the interrogator includes a receiver, an analog to digital converter (A/D), a video quantizer, a leading edge detector, and a decoder. The reply received by the interrogator includes a series of information pulses that may identify the aircraft, or contain altitude or other information. The reply is a pulse position modulated (PPM) signal that is transmitted in either an Air Traffic Control Radar Beacon System (ATCRBS) format or in a Mode-Select (Mode-S) format. Other replies are possible as is known to those skilled in the art.
A TCAS II equipped aircraft can monitor other aircraft within approximately a 20-mile radius of the TCAS II equipped aircraft. (see, e.g., Brettner et al., U.S. Pat. No. 5,805,111, Method and Apparatus for Accomplishing Extended Range TCAS, which describes an extended range TCAS.) When an intruding aircraft is determined to be a threat, the TCAS II system alerts the pilot to the danger and gives the pilot bearing and distance to the intruding aircraft. If the threat is not resolved and a collision or near miss is probable, then the TCAS II system advises the pilot to take evasive action by, for example, climbing or descending to avoid a collision.
The TCAS II system, which is currently in operation on many commercial and military aircraft, is very effective in providing midair collision avoidance in civil Air Traffic Control (ATC) airspace in determining the range, altitude, and bearing with other aircraft equipped with Mode S/ATCRBS transponders. It monitors the trajectory of these aircraft for the purpose of determining if any of them constitute a potential collision hazard. The system is responsible for estimating the projected intruder track and determining if a potential conflict exists. If a conflict is detected, the system displays an advisory to the pilot. The system also provides guidance for vertical avoidance maneuver, known as Resolution Advisories (RAs). Complementary avoidance maneuvers between two TCAS equipped aircraft are ensured by automatic coordination of mutual intentions with the other aircraft through the Mode S transponders and associated TCAS.
However, the TCAS II (or other TCAS units) originally was not designed to handle unique mission capabilities, which would be required, for example, by military aircraft. Examples of such unique mission capabilities are: operate in a tactical environment (tactical speed and dynamic maneuvers), perform highly dynamic, close-in formation flight, rendezvous, and air refueling. At the same time, the system must effectively detect and avoid midair collision situation.
III. SUMMARY OF THE INVENTION
The present invention comprises a hybrid midair collision avoidance system (MCAS), which can provide a comprehensive solution for mid air collision avoidance and unique mission capabilities to perform formation flight, rendezvous, and air re-fueling. An aircraft equipped with this MCAS can operate in many different environment modes, from a regulated air traffic management (ATM) airspace to a tactical air space of battlefield, or a peripheral airspace having both ATM operational and tactical operational attributes.
The ATM module contains many existing core TCAS II functions, which can provide traffic advisory (TA) and resolution advisory (RA) capabilities for an aircraft to handle collision avoidance situation in the ATC airspace or environment. The ATM module is based on the latest TCAS II system or equivalent which currently complies with the Federal Aviation Administration (FAA) Technical Standard Order (TSO)-C119
a.
The ATM module is easily upgradeable to incorporate any new requirement changes in order to be compliant with future ATM requirements.
To minimize the certification process for commercial TCAS related functions and to address specifically the operational capabilities of aircraft, such as those used by the military aircraft, all of the missionized capabilities required to operate in a tactical environment are allocated to the Tactical module. The tactical module works in conjunction with the ATM module to provide the following mission attributes: quick-time response, resistant to jamming and interference, and minimized detection beyond a short distance (e.g., 10 miles or less). The primary function of the Tactical module is to provide tactical traffic alerts, tactical collision avoidance resolutions, display and control guidance to support unique mission capabilities such as formation flight, rendezvous, and air refueling in a highly dynamic environment.
The novel features of the present invention will become apparent to those of skill in the art upon examination of the following detailed description of the invention or can be learned by practice of the present invention. It should be understood, however, that the detailed description of the invention and the specific examples presented, while indicating certain embodiments of the present invention, are provided for illustration purposes only because various changes and modification

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Midair collision avoidance system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Midair collision avoidance system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Midair collision avoidance system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2464008

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.