Method for treating ischemia

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S300000, C514S002600

Reexamination Certificate

active

06294519

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to the use of deltorphins to treat cerebral ischemia and ischemic heart disease.
BACKGROUND
Tissues deprived of blood and oxygen undergo ischemic necrosis or infarction with possible irreversible organ damage. Cerebral ischemia results from decreased blood and oxygen flow implicating one or more of the blood vessels of the brain. In cerebral ischemia, the individual suffers a stroke with sudden development of a focal neurologic deficit and, in most cases, some degree of brain damage. The decreased blood flow may be due to, for example, an occlusion such as a thrombus or embolus, vessel rupture, sudden fall in blood pressure, change in the vessel lumen diameter due to atherosclerosis, trauma, aneurysm, developmental malformation, altered permeability of the vessel wall or increased viscosity or other quality of the blood. Decreased blood flow may also be due to failure of the systemic circulation and severe prolonged hypotension. Ischemic necrosis of the spinal cord may result in sensory or motor symptoms or both that can be referred to cervical, thoracic or lumbar levels of the spine. Ischemic heart disease results from an imbalance between myocardial oxygen supply and demand. In ischemic heart disease, the individual suffers angina pectoris, acute myocardial infarction or sudden death. The imbalance may be caused by, for example, atherosclerotic obstruction of one or more large coronary arteries, nonatheromatous coronary obstructive lesions such as embolism, coronary ostial stenosis associated with luetic aortitis, coronary artery spasm, congenital abnormalities of the coronary circulation, increased myocardial oxygen demands exceeding the normal supply capabilities as in severe myocardial hypertrophy, reduction in the oxygen carrying capacity of the blood such as in anemia, or as a consequence of inadequate cardiac perfusion pressure due to hypotension from any cause.
Current treatments for ischemia encompass behavioral changes, drug therapy, and/or surgical intervention. Drugs are frequently preferred before resorting to invasive procedures and to provide more immediate relief than long-term behavioral changes. Thus, there is a need for a therapeutic agent which can be useful in treating or preventing ischemia.
SUMMARY OF THE INVENTION
The present invention fills this need by providing a method of treating ischemia in a mammal comprised of administering a pharmaceutically effective amount of a deltorphin to said mammal. The ischemic tissue may be brain, spinal cord or heart.
The present invention is also directed to a method of reducing the effect of an ischemic episode comprised of administering a pharmaceutically effective amount of a deltorphin to said mammal.
The present invention is also directed to a method of treating cerebral or spinal cord ischemia or ischemic heart disease in a mammal comprised of administering a pharmaceutically effective amount of a deltorphin to said mammal.
Preferably, the deltorphin is administered in a pharmaceutical composition at a dosage in the range of about 0.5 mg/kg body weight to about 20 mg/kg body weight, or alternatively lower doses in the range of about 1 &mgr;g/kg body weight to about 1000 &mgr;g/kg body weight of the mammal.
Preferably, the mammal is a human.
DETAILED DESCRIPTION
Deltorphins are endogenous linear heptapeptides isolated from skin extracts of the South American frog
Phyllomedusa bicolor
. These may be further divided into deltorphin I SEQ ID NO:1 and deltorphin II SEQ ID NO:2 depending on their amino acid sequence. Deltorphin I SEQ ID NO:1 has the amino acid sequence Tyr-Ala-Phe-Asp-Val-Val-Gly-NH
2
with alanine as either the L- or D- isomer. Deltorphin II SEQ ID NO:2 has the amino acid sequence Tyr-Ala-Phe-Glu-Val-Val-Gly-NH
2
with alanine as either the L- or D-isomer. Either deltorphin I SEQ ID NO:1, deltorphin II SEQ ID NO:2 or a combination of deltorphin I SEQ ID NO:1 and II SEQ ID NO:2 may be used in the invention. Deltorphins may be obtained from frog skin extracts or may be synthesized using a commercial peptide synthesizer such the type available from Applied Biosystems.
Deltorphins can be administered to ameliorate or inhibit damage caused by a stroke. A stroke is the acute neurologic injury caused by one of several pathologic processes involving the blood vessels of the brain. The pathologic process may be intrinsic to the vessel itself such as in arteriosclerosis, or may originate from a remote location such as an embolus, or may result from decreased perfusion or increased blood viscosity with inadequate cerebral blood flow, or may result from the rupture of a vessel in the subarachnoid space or intracerebral tissue.
The main causes of ischemic stroke are thrombosis, vasoconstriction and embolism. Diagnosis of a stroke can be readily made by one of ordinary skill in the art. Signs of stroke include paralysis, slurred speech, general confusion, impairment of gait, cortical sensory loss over toes, foot and leg and urinary incontinence, to name just a few. The diagnosis can be confirmed by cerebral angiography and by a computed axial tomography (CT) scan of the brain.
If a stroke occurs, deltorphins can be administered to limit injury to the brain. The ideal mode of administration is by intraperitoneal (i.p.) or intravenous (i.v.) injection at a dose of about 0.5-20 mg/kg, or alternatively of about 1-1000 &mgr;g/kg. Deltorphins can also be administered by subcutaneous or intraarterial injection into the carotid artery, or by direct injection into the brain, e.g, intracerebroventricular injection for dispersion into other areas.
Very often a stroke is caused by a cerebral embolism, the likelihood of which can frequently be predicted. In these cases, the deltorphin can be administered prophylactically to prevent or lessen the amount of brain tissue injured during such an event. Many types of heart disease including cardiac arrhythmias or diseases due to cardiac structural abnormalities may produce cerebral emboli. Atrial fibrillation from any cause, including rheumatic valvular disease, may result in emboli being produced which can migrate into the arteries of the brain. Emboli formation and migration can occur as a result of arteriosclerotic cardiovascular disease and myocardial infarction. Emboli formation is also a definite risk for intracardiac surgery and prosthetic valve replacement. Heart bypass surgery and angioplasty can result in the formation of microemboli which can migrate into the arteries of the brain and cause a series of occlusions in a number of arteries, resulting in mental impairment. Cerebral embolism is also the principal complication in the transplant of artificial hearts. Furthermore, the overall risk of stroke after any type of general surgery is 0.2 to 1 percent. The vegetations of acute and subacute bacterial endocarditis can give rise to emboli which can occlude a major intracranial artery. Thus, when these disease states or surgical procedures are planned or are happening, deltorphins can be administered to prevent brain damage due to any resultant emboli and stroke.
Deltorphins can be administered to ameliorate or prevent ischemic necrosis of the spinal cord. The ischemia may be caused by an endarteritis of surface arteries leading to thrombosis. Atherosclerotic thrombosis of the aorta or dissecting aortic aneurysms may cause infarction of the spinal cord (myelomalacia) by occluding nutrient arteries at cervical, thoracic or lumbar levels, as can paralysis during cardiac surgery requiring clamping of the aorta for more than 30 minutes and aortic arteriography. Infarctive or hemorrhagic vascular lesions of the spinal cord (hematomyelia) may result in the sudden onset of symptoms referable to sensory or motor or both spinal tract lesions.
Deltorphins can also be administered to ameliorate or inhibit damage caused by ischemic heart disease. Ischemic heart disease is a general term for a spectrum of diseases of diverse etiology caused by an imbalance between oxygen supply and demand. The usual cause of the imbalance is atheroscleroti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for treating ischemia does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for treating ischemia, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for treating ischemia will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2461506

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.