Soybean based transformer oil and transmission line fluid

Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Organic -co- compound

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C508S578000, C252S570000, C252S579000, C174S0170LF, C361S327000

Reexamination Certificate

active

06207626

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to fluids that are used with electrical equipment and transmission components, and in particular, to fluids used for electrical insulation and/or heat dissipation in electrical components such as, for example, electrical transformers and electrical transmission lines.
2. Problems in the Art
The components that are used to generate and transfer electrical energy to end users, such as homeowners or businesses, are well known in the art. Electrical power producers generally generate electrical power at very high initial voltages. Handling of such high voltages requires substantial electrical insulation. It requires control of heat that is generated from the transmission of the electrical energy and maintenance of its dielectric properties.
It has been found that certain fluids have high insulating and heat dissipation properties. These fluids are used with such electrical components as transformers and fluid filled transmission lines. One particular problem, even with such fluids, is that over time and with substantial exposure to high voltage electricity, the beneficial characteristics of such fluids, such as insulating and/or heat dissipation properties, degrade.
Conventionally, petroleum based fluids are used for these types of applications. It must be appreciated that such fluids have certain properties that allow them to function satisfactorily. They must be electrically insulating and dissipate heat. They must resist break-down. Synthetic fluids are also in use. However, currently used fluids have several deficiencies or concerns.
Most of the current fluids are minimally biodegradable. They pose safety or contamination concerns. They can be toxic to humans and animals. Many electrical components holding such fluids are situated near water or waterways. Leakage or spills can cause serious damage to water and marine life. Leaks or spills on land can threaten ground water and contaminate soil.
Petroleum based products are non-renewable. The amount of fluid of this type in use is significant. For example, one 15 MVA transformer (approximately serves 2000 customers, both residential and commercial) requires on the order of 3600 gallons of electrically insulating fluid. One mile of fluid filled transmission cable (6 inch diameter) requires about 7000 gallons. There are approximately 20,000 miles of high-pressure fluid filled transmission cables (one type of the same) in the United States, most in larger cities and therefore most are near water or waterways.
As can be appreciated, significant amounts of resources, both time and money, are spent by electrical power companies, in designing and implementing plans and systems to deter leaks or spills and to monitor transformers and transmission cables of these types for leaks or spills. It is estimated such costs are in the millions of dollars in the United States. Additionally, substantial resources are expended in reporting leaks or spills, even minor, because of environmental rules and regulations with regard to at least petroleum based fluids. And, of course, the effect of leaks or spills can be very costly, as can remediation of the same.
Therefore, there have been attempts to look to new sources for such fluids, including vegetable oils. Such attempts would address both the environmental concerns as well as the issue of renewability of source. While synthetic fluids are somewhat renewable, they generally still present environmental concerns.
A similar problem exists with respect to petroleum or synthetic based lubricants. The idea of substituting vegetable oils as a substitute for petroleum-based industrial lubricants is not new. Furthermore, finite supply of petroleum based products plus concerns over environmental effects from spills/disposal of petroleum based lubricants has fueled interest in the use of vegetable oils as viable substitutes.
Efforts in use of vegetable oils as the base oil have focused upon less stringent uses such as hydraulic fluids, transmission fluids, and greases and not on the more severe automotive-type (engine) lubricants, or transformer cooling oils. The vast majority of these endeavors have utilized vegetable oils high in natural oleic acid levels such as safflower oil, canola and rapeseed oils. The reason for this focused research upon these high oleic acid level vegetable oils is the tendency of natural vegetable oils to destabilize in use absent the presence of a high level of oleic acid. Soybean oils have a relatively low level of oleic acid and have been uniformly rejected in practical application because of the tendency of soybean oil to solidify while in use within the environment of high temperatures.
There are several fundamental properties transformer oils, for example, require, most of which are contrary to the natural properties of vegetable oils. Those are oxidation stability, dielectric constant, pour point, sludge formation, and formation of acids. Of all the vegetable oils, such as rapeseed, canola and castor, commonly considered for industrial lubricants, soybean oil is the more unstable (oxidatively) because of its unsaturated nature. Additionally, it does not have the dielectric properties necessary to insulate.
The primary purpose of the types of fluid needed for electrical transformers and fluid-filled transmission lines, hereinafter referred to as electrically insulating fluid, is to maintain cooling properties and fluid characteristics while in use within the system so as to maintain appropriate temperature as well as dielectric strength on demand. The heat of the transformer unit, for example, can increase to high levels for extended periods of time which the fluid must be able to tolerate without losing its properties. Additionally, the operation of transformers and the process of heat dissipation at varied ambient temperatures subjects the fluid to constant stresses.
Some vegetable oil based electrically insulating fluids have found commercial success. These vegetable oil based fluids have often been of the more naturally stable seed oils. Specifically, oils naturally high in oleic acid content or low in linolenic content and in some cases low erucic acid have been used. Variations in temperature, in particular high temperature environments, are known to impact the ability of a vegetable oil based fluid to remain in the liquid state. As a result, this limited number of vegetable oils have been found to function with relative success.
Use of vegetable oil based electrically insulating fluids in the out-of-doors environment presents a much harsher challenge. To date, the success of such fluids has been very limited. Rapeseed and canola oil based fluids have been commercially offered, but questions remain as to the functionality. These questions include sufficiency of electrical insulating properties and oxidation problems. Also, since crops such as rapeseed and canola are grown mainly outside the United States, it is expensive to import and produce, which in turn increases the expense of making oils from them.
Because the above questions regarding rapeseed and canola oil exist, the same questions exist with respect to other less thermally stable oils such as soybean.
Soybean oil, because of its unsaturated nature, lacks desired oxidative stability for many industrial applications where continuous long-term heating takes place. In use, transformer and transmission line cooling oil must successfully operate not only to cool the components of the transformer and transmission line but also to not break down thus changing its dielectric constant. The key characteristics required for such fluid use are:
1. High oxidation stability:
a. long life and protection;
b. no oxidation materials; and
c. no changes in chemical properties.
2. Viscosity Characteristics:
a. low pour point for cold temperature service, particularly in cold temperature regions; and
b. high Viscosity Index for best viscosity under various operating temperatures.
3. Corrosion Inhibition Properties:
a. inhibits contaminants in the fl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Soybean based transformer oil and transmission line fluid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Soybean based transformer oil and transmission line fluid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soybean based transformer oil and transmission line fluid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2461305

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.