Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Bump leads
Reexamination Certificate
1999-07-01
2001-03-06
Mis, David (Department: 2817)
Active solid-state devices (e.g., transistors, solid-state diode
Combined with electrical contact or lead
Bump leads
C257S690000, C257S704000, C257S730000
Reexamination Certificate
active
06198166
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to a semiconductor device package and, more particularly, to a package for mounting power semiconductor devices on a printed circuit board using a ball grid array.
BACKGROUND OF THE INVENTION
Because of the power dissipation requirements for power integrated circuits, the power electronics industry currently uses chip packages that do not conform to IC industry standards. Packages designed for surface mounting on printed circuit boards (PCBs) typically include large external rectangular contact pads that are usually formed from copper tungsten alloy or other similar conductive material to match the coefficient of expansion (CTE) of the alumina within the package.
The CTE of the copper/tungsten used in such pads does not accurately match the CTE of the printed circuit board. Consequently, solder fatigue of the pad/PCB joint is a significant problem in assembly and operation of a power switch, and the integrated circuit industry has developed no standard way to solve it. The problem is relatively small for low-power ICs, for which other solutions have been developed, but it much more serious for power switches with their higher operating temperatures and larger component sizes.
The IC industry has introduced PGAs (pin grid arrays) that allow for smaller footprints but does not directly solve the problem of solder fatigue. More recently, ICs that incorporate a ball grid array (BGA) do directly attack the solder fatigue problem between the package and board material by matching the CTE of the array more closely with that of the PCB.
Ceramic packaging technology is traditionally used to support high performance IC devices owing to the high reliability, thermal conductivity and excellent routability of ceramics. The material has a comparatively close coefficient of expansion (CTE) with silicon. Although the thermal conductivity characteristics of ceramic is an advantage for first-level interconnect, they present a problem for second-level mounting on the PCB for power devices.
A power device passes current from the bottom of the device to the top; therefore the die attach pad must be accessible to the outside of the package. Wirebonds are customarily used to direct the current from the top of the die to another pad accessible to the outside of the package, but wirebonding entails the use of resistive junctions between the wire and the pads at either end. Current passing through a resistive junction creates heat. In a power device, elevated resistance in a wirebond junction reduces the current, thereby limiting the power output, and exposes the device to a higher risk of failure from overheating resulting from inadequate dissipation of the heat being generated.
U.S. Pat. No. 5,406,120 to Jones describes a hermetically-sealed semiconductor ceramic package using a large heat dissipating plane brazed to a ceramic substrate, a wirebond method of making electrical connections to the die, a via method of connection through the hermetic seal, and the use of ceramic sidewalls for the hermetic package. The vias in Jones contain copper or other superior conductor plated with silver to facilitate conductive connection; the inner surfaces of the vias are metallized with a refractory metal. The resulting package is complex in its construction and nonstandard in its overall form and PCB mounting, illustrating clearly the problems faced in mounting power devices simply and reliably on PCBs.
U.S. Pat. No. 5,726,493 to Yamashita et al. disclose a ball grid array structure for a semiconductor device in which the device is sealed with a sealing resin and an electrically conductive pin passing through the resin to serve as an electrode member.
U.S. Pat. No. 5,834,839 to Mertol describes a semiconductor package that includes solder balls and an encapsulant covering the semiconductor die and bond wires and forming a protruberance from the lower surface of the package substrate.
U.S. Pat. No. 5,909,058 to Yano et al. describes a semiconductor package and semiconductor mounting part that is focused principally on increasing the number of terminals and decreasing the package size for non-power ICs.
It would be desirable to extend a ball grid array (BGA) connection structure, which is advantageous for integrated circuits, to the attachment of power semiconductor devices to printed circuit boards. This benefit is realized by the present invention.
SUMMARY OF THE INVENTION
In accordance with the present invention, a package for mounting a power semiconductor device to a printed circuit board comprises a dielectric ceramic plate having an upper and lower surface and a grid array of holes penetrating the plate. A plurality of conductive metal contact pads that provide electrical contact for the power semiconductor device are disposed on the upper surface of the ceramic plate, and a conductive metal fills the holes. The metal-filled holes are connected to the conductive metal contact pads and provide vias from the pads to the lower surface of the ceramic plate.
An array of solder balls, each ball being attached to a via at the lower surface of the ceramic plate, provide connection terminals to the printed circuit board. Sidewalls are sealably connected to the ceramic plate at its perimeter, and a lid is sealably connected to the sidewalls. The lid comprises, together with the sidewalls and ceramic plate, a hermetically sealed cavity that encloses the power semiconductor device and conductive metal contact pads.
The package of the present invention enables power switches to be mounted to the PCB using BGA mounting technology that is standard for non-power devices, with attendant advantages of reliability and ease of board mounting. The package of the present invention provides lowered resistance and, consequently, less likelihood of overheating than power device packages currently in use.
REFERENCES:
patent: 5909056 (1999-06-01), Mertol
patent: 6097085 (2000-08-01), Ikemizu et al.
Intersil Corporation
Jaeckle Fleischmann & Mugel LLP
Mis David
LandOfFree
Power semiconductor mounting package containing ball grid array does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Power semiconductor mounting package containing ball grid array, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Power semiconductor mounting package containing ball grid array will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2455034