Methods for treating atherosclerosis and vulnerable plaques

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S099000, C607S101000, C606S041000

Reexamination Certificate

active

06228109

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention generally relates to improved medical apparatus and methods for treating vascular tissues, and more particularly, to such an ablation apparatus and methods for treating atherosclerosis or tissues in a patient by delivering therapeutic RF energy at least one time through a metal stenting element to the specific lesion sites.
BACKGROUND OF THE INVENTION
An artery is one of the tube-shaped blood vessels that carry blood away from the heart to the body's tissues and organs. An artery is made up of outer fibrous layer, smooth muscle layer, connecting tissue and the inner lining cells. If arterial walls become hardened due to the accumulation of fatty substances, then blood flow can diminish. Hardening of the arteries, or loss of vessel elasticity, is termed arteriosclerosis while fatty deposit build-up is termed atherosclerosis. Atherosclerosis and its complications are a major cause of death in the United States. Heart and brain diseases are often the direct result of this accumulation of fatty substances that impair the arteries' ability to nourish vital body organs.
Balloon angioplasty is a nonsurgical method of clearing coronary and other arteries, blocked by atherosclerotic plaque, fibrous and fatty deposits on the walls of arteries. A catheter with a balloon-like tip is threaded up from the arm or groin through the artery until it reaches the blocked area. The balloon is then inflated, flattening the plaque and increasing the diameter of the blood vessel opening. The arterial passage is thus widened. As a result of enlarging the hardened plaque, cracks may unfortunately occur within the plaque to expose the underlying fresh tissue or cells to the blood stream.
There are limitations, however, to this technique's application, depending on the extent of the disease, the blood flow through the artery, and the part of the anatomy and the particular vessels involved. Plaque build-up and/or severe re-stenosis recurs within 6 months is up to 30-40 percent of those treated. Balloon angioplasty can only be characterized as a moderate-success procedure. Recently, a newer technique of inserting a metallic stenting element is used to permanently maintain the walls of the vessel treated at its extended opening state. Vascular stents are tiny mesh tubes made of stainless steel or other metals and are used by heart surgeons to prop open the weak inner walls of diseased arteries. They are often used in conjunction with balloon angioplasty to prevent restenosis after the clogged arteries are treated. Stenting procedure reduces the probability of restenosis; however, the success rate is still sub-optimal. The underlying ruptured fresh tissue or denuded cells still pose as a precursor for vessel reclosures or angio-spasm. Neointima and/or intimal hyperplasia through the openings of the expanded stent meshes as a result of plaque rupture and/or tissue injury remains a major cause for stent restenosis.
When a clogged artery is widened, the plaque is broken up and the underlying collagen or damaged endothelium is exposed to the blood flow. Collagen has a prothrombotic property that is part of body healing process. Unless the collagen or the damaged endothelium is passivated or modulated, the chance for blood vessel clotting as well as restenosis exists. Moderate heat is known to tighten and shrink the collagen tissue as illustrated in U.S. Pat. Nos. 5,456,662 and 5,546,954. It is also clinically verified that thermal energy is capable of denaturing the tissue and modulating the collagenous molecules in such a way that treated tissue becomes more resilient (“The Next Wave in Minimally Invasive Surgery” MD&DI pp. 36-44, August 1998).
Therefore, it becomes imperative to post-treat vessel walls after the walls are treated with angioplasty and/or stenting procedures. Since the freshly exposed collagen or denuded endothelium is partially passivated or modulated via the post-treatment method, a thermal energy post-treatment therapy comprising multiple treatment periods following angioplasty and/or stenting to completely mitigate the intimal hyperplasia for the subsequent elimination of restenosis becomes clinically necessary. For example, a first thermal energy post-treatment may be done immediately after the stenting procedure to take advantage of the operational setup for the patient. A second thermal energy post-treatment may also be done to the same patient at about one to two weeks post-operationally when the patient recovers from the stenting operation.
One method of reducing the size of cellular tissues in situ has been used in the treatment of many diseases, or as an adjunct to surgical removal procedures. This method applies appropriate heat to the tissues, and causes them to shrink and tighten. It can be performed on a minimal invasive fashion, which is often less traumatic than surgical procedures and may be the only alternative method, wherein other procedures are unsafe or ineffective. Ablative treatment apparatus have an advantage because of the use of a therapeutic energy that is rapidly dissipated and reduced to a non-destructive level by conduction and convection or other natural processes.
RF therapeutic protocol has been proven to be highly effective when used by electrophysiologists for the treatment of tachycardia; by neurosurgeons for the treatment of Parkinson's disease; and by neurosurgeons and anesthetists for other RF procedures such as Gasserian ganglionectomy for trigeminal neuralgia and percutaneous cervical cordotomy for intractable pains. Radiofrequency treatment, which exposes a patient to minimal side effects and risks, is generally performed after first locating the tissue sites for treatment. Radiofrequency energy, when coupled with a temperature control mechanism or software algorithm, can be supplied precisely to the apparatus-to-tissues contact site to obtain the desired temperature for treating a tissue.
A stent deployed within a vessel, such as a coronary stent, has excellent metal-to-tissue contact surface. It becomes an ideal medium for applying thermal energy to the tissue needed for treatment or modulation. In the case of angioplasty alone, the enlarged blood vessel still needs certain metallic contact surface for delivering the RF thermal energy to the denuded collagen or damaged endothelium. A temporary or an expandable/retractable metallic stenting element is useful in this case to shrink and tighten the target tissue. Therefore, there is a need for an improved medical apparatus having the capability to effectively contact the desired inner walls of a tubular vessel using the radiofrequency energy to treat an enlarged artery, veins or other tissues, such as esophagus, larynx, ureter, urethra and the like.
SUMMARY OF THE INVENTION
In general, it is an object of the present invention to provide a method and an improved medical ablation apparatus for generating heat, to treat the atherosclerosis, vascular vessels, or other tissues, such as intestine, colon, ureter, uterine tube, and the like. It is another preferred object of the present invention to provide a method for repeatedly generating heat to treat the atherosclerosis at different post-procedure times. It is another object of the present invention to provide a method and an apparatus for monitoring the temperature of the ablated tissue, and to control the temperature by utilizing a temperature control mechanism and/or algorithm. The location of the temperature sensor means is preferably at close proximity of the electrode means of the ablation apparatus. It is still another object of this invention to provide a method and an apparatus for treating atherosclerosis, vascular walls, or tubular cellular tissues in a patient by applying RF current to a pre-implanted stent and consequently to the underlying tissues. It is still another preferred object of the present invention to provide a method by applying RF current to a pre-implanted stent and consequently to the underlying tissues at different post-procedure times.
Briefly, heat i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for treating atherosclerosis and vulnerable plaques does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for treating atherosclerosis and vulnerable plaques, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for treating atherosclerosis and vulnerable plaques will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2450208

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.