Liquid purification or separation – With alarm – indicator – register – recorder – signal or... – Responsive to fluid flow
Reexamination Certificate
1999-01-28
2001-09-11
Fortuna, Ana (Department: 1723)
Liquid purification or separation
With alarm, indicator, register, recorder, signal or...
Responsive to fluid flow
C210S098000, C210S142000, C210S275000, C137S624140, C137S624180
Reexamination Certificate
active
06287457
ABSTRACT:
This invention relates to a water treatment device, more particularly of the type whereby the water during treating is brought into contact with a treatment medium, whereby this treatment medium is rinsed regularly or regularly regenerated by means of a regeneration medium.
In the first place, water softeners are intended hereby, the invention, however, does not exclude other applications in which other treatments are performed.
It is known that such water treatment devices are equipped with a regulator which provides for the regular performance of an automatic regeneration.
Two types of regulators are known, electrically actuated regulators and hydraulically actuated regulators, respectively. The electrical type shows the disadvantage that it is very expensive. Another disadvantage consists in that such regulator requires the availability of an electric supply.
The invention substantially relates to the hydraulically actuated type of regulators, which do not show the above-mentioned disadvantages.
In the hydraulically actuated type, in order to perform such regeneration, it is known to provide such regulator with a hydraulically driven monitoring mechanism with which the water consumption is controlled and the start of the regeneration cycle can be ordered, and, on the other hand, with a hydraulically driven second monitoring mechanism with which the regeneration cycle is controlled. To this aim, use is made of two volumeters which respectively provide for the drive of the two monitoring mechanisms. Such a device is, among others, described in U.S. Pat. No. 3,891,552.
An inconvenience of these known regulators consists in that they are rather complicated, among others, because various volumeters are necessary.
Apart from the aforementioned American patent U.S. Pat. No. 3,891,552, other, less relevant water treatment devices and related technologies are known from the American patents:
U.S. Pat. Nos. 2,024,479, 3,136,331, 3,164,550, 3,302,467, 3,396,845, 3,454,492, 3,509,998, 3,570,520, 3,792,614, 3,960,721, 4,026,673, 4,089,220, 4,298,025, 4,313,825, 4,336,134, 4,337,153, 4,539,106, 4,577,498, 4,693,814, 4,804,465, 4,889,623, 4,943,371, 4,990,245, 5,022,994, 5,060,167, 5,069,779, 5,073,255, 5,089,140, 5,116,491, 5,157,979, 5,512,168, 5,589,058,
and also from the patent documents:
EP 219,704, DE 1,517,483, DE 2,001,516, DE 2,060,751, DE 2,131,117, DE 2,319,343, DE 2,339,589, DE 2,652,113, DE 4,227,135, FR 2,223,609, NL 7114100 and WO 9413379.
The invention aims at providing a water treatment device which is considerably simplified.
Furthermore, the invention aims, according to a preferred form of embodiment, at an embodiment which, with regard to the known embodiments, shows various additional advantages, such as a very accurate regulation, the aptness for the treatment of small usage volumes, the simple possibility of expansion to larger usage volumes, and the more efficient use of the available treatment medium and regeneration means.
To this aim, the invention in the first place refers to a water treatment device, of the type whereby the water during treating is brought into contact with a treatment medium, whereby this treatment medium, either by means of a regeneration medium or not, is regenerated regularly and whereby, to this aim, a regulator is used which is provided, on one hand, with a hydraulically driven first monitoring mechanism with which the water consumption can be controlled and the start of the regeneration cycle can be ordered, and, on the other hand, with a hydraulically driven second monitoring mechanism with which the regeneration cycle is controlled, characterized in that both monitoring mechanisms are driven by means of the same volumeter.
By using only a single volumeter, the regulator becomes considerably less complicated and also takes less space than in the known hydraulic embodiments.
According to the preferred form of embodiment, a volumetric measuring element is used for the volumeter, this in opposition to the classically applied turbines. The use of a volumetric measuring element for the hydraulic drive of such a measuring regulator shows the advantage that a very accurate measurement is possible, as a result of which the water can be measured very exact for performing the regeneration, and also during the service function the water consumption can be registered precisely, this in opposition to a turbine-meter which is understood to register volumes lower than actual at low flow rates, and even more does not function at very low flow rates. Such turbine-meter also produces a lower driving torque and shows a larger and more complex transmission ratio. By the use of a volumetric measuring element, the conditioning device can thus be made smaller, as a result of which is it not only apt for industrial use, but also for househould applications where small, varying flow rates often occur.
The use of a volumetric measuring element also has the advantage that equal exactness is obtained in either flow direction. As a result of this, the conduit circuit of the regulator can be simplified considerably because no complicated switchings have to be performed which have to provide for the water flowing only in one direction through the volumeter.
Such volumetric volumeters are known themselves, amongst others from the literary work “Chemical Engineers' Handbook” by J. H. Perry, fourth edition, 1963, edited by McGraw-Hill Book company, p. 22-25, more particularly the “oscillating-piston meters” and “nutating-piston meters” mentioned on this page.
Further, the water treatment device is provided with a number of valves with which the flow path of the water and the regeneration medium can be altered between a service condition and a regeneration condition. According to a preferred form of embodiment of the invention, the aforementioned regulator provides for a groupwise operation of these valves. This groupwise operation of these valves occurs by groupwise actuation by means of respective servo valves. In this manner, the number of servo valves can be limited considerably, and, according to a form of embodiment of the present invention, even be reduced to two.
According to a particular form of embodiment, this is achieved by using a conduit circuit which, according to the invention, consists of a supply; a treatment tank wherein the treatment medium is contained; a conduit, extending from the supply to the inlet of the treatment tank, in which conduit a first valve is provided; a conduit, connecting the inlet of the treatment tank to a drain, wherein a second valve is provided; a conduit between the outlet of the treatment tank and a usage outlet, in which conduit a third valve is provided; optionally, if regeneration medium has to be supplied, a circuit for the supply of regeneration medium, provided over the third valve in a parallel manner, in which a fourth valve is provided; and a connection between the aforementioned usage outlet and supply, which optionally is provided with a fifth valve; whereby the first valve, the second valve and the fifth valve are controlled by a first of aforementioned two servo valves, the third valve is controlled by the second servo valve, and the fourth valve is controlled by the first servo valve or second servo valve.
For the groupwise operation, according to the invention use is made in an advantageous manner of pressure lines connecting the various valves to each other in such a manner that the servo valves only have to actuate a limited number of valves and one or more other valves react upon this automatically. To this end, in the above described conduit circuit, the fourth valve shall preferably be controlled indirectly by the second or first servo valve by actuating this fourth valve by the pressure drop over the third valve or over the first valve.
The actuation of each of said five valves by means of separate servo valves, however, is not excluded. Also in this case, the invention offers the advantage that only five servo valves are required.
The aforementioned servo valves consist of openings which are close
Bacon & Thomas
Fortuna Ana
Padema, Naamloze Vennootschap
Ward Richard W.
LandOfFree
Water treatment device having volumeter driven monitoring discs does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Water treatment device having volumeter driven monitoring discs, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Water treatment device having volumeter driven monitoring discs will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2447841