Ink compositions comprising a latex and processes thereof

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S556000, C526S317100, C526S319000

Reexamination Certificate

active

06239193

ABSTRACT:

Disclosed in U.S. Pat. No. 5,837,043 and U.S. Pat. No. 5,762,695, the disclosures of each application being totally incorporated herein by reference in their entirety, are inks with certain surfactants. More specifically, in U.S. Pat. No. 5,762,695, there is disclosed an ink jet ink and imaging process which comprises the development of an image with an aqueous ink jet ink composition comprised of, for example, colorant, water, and resin.
The following applications, the disclosures of each being totally incorporated herein by reference, relate to ink compositions and processes thereof:
U.S. Ser. No. 09/385,207 and U.S. Ser. No. 09/385,909, both being filed concurrently herewith;
U.S. Ser. No. 09/017,533 relating to an aqueous ink containing a dissipatable polymer, colorant and a zwitterionic component like betaine;
U.S. Ser. No. 09/017,459 relating to an ink containing a colorant, polymer, such as a dissipatible polymer, vehicle, and a salt of polyacrylic, a salt of polyamic acid, a salt of alginic acid, or mixtures thereof;
U.S. Ser. No. 09/017,537 relating to an ink containing a resin of a dissipatible sulfonated polyester terminated with acrylic or methacrylic acid groups; and
U.S. Pat. No. 5,938,827 relating to an ink containing a mixture of two black colorants, betaine, and N,N′-bis(3-aminopropyl) ethylenediamine.
Emulsion/aggregation/coalescence processes for the preparation of dry toners are illustrated in a number of Xerox patents, the disclosures of each of which are totally incorporated herein by reference, such as U.S. Pat. No. 5,290,654, U.S. Pat. No. 5,278,020, U.S. Pat. No. 5,308,734, U.S. Pat. No. 5,370,963, U.S. Pat. No. 5,344,738, U.S. Pat. No. 5,403,693, U.S. Pat. No. 5,418,108, U.S. Pat. No. 5,364,729, and U.S. Pat. No. 5,346,797; and also of interest may be U.S. Pat. Nos. 5,348,832; 5,405,728; 5,366,841; 5,496,676; 5,527,658; 5,585,215; 5,650,255; 5,650,256 and 5,501,935.
The appropriate components and processes of the above applications and patents may be selected for the present invention in embodiments thereof.
BACKGROUND OF THE INVENTION
The present invention is generally directed to ink compositions, and processes thereof, and more specifically, the present invention is directed to processes for the preparation of colored aqueous ink compositions particularly suitable for use in ink jet printing processes, and especially thermal ink jet processes, and other similar processes, and wherein there is permitted minimal or no kogation, inks with suitable particle sizes, minimal intercolor bleed for the images developed, stabilized polymer latexes, and wherein paper curl is minimized and image smearing is minimal, or avoided. The inks in embodiments of the present invention are comprised of an ink vehicle, colorant, and additives, and wherein the inks can be prepared by blending a nonionic surfactant stabilized latex, and preferably a polymer or copolymer of ethylenically unsaturated monomers, wherein the ethylenically unsaturated monomers are, for example, ethylenically unsaturated esters, styrene functional monomers or olefinic acids, and a colorant dispersion, and wherein the latex can be prepared by emulsion polymerization in the presence of a nonionic surfactant with an HLB (hydrophilic/lipophilic balance) value of, for example, about 16 to about 21 and preferably from about 17.5 to about 20, and wherein the resulting inks exhibit no kogation or heater deposits when used with a nonionic surfactant stabilized latex that is designed to complement the colorant. Prevention of heater deposits/kogation enables, for example, superior ink jetting performance and enhanced life in the ink jet printhead. The latex emulsion incorporated in the ink also enables excellent ink thermal stability, hence the shelf life of the ink is not at risk, for example the ink does not readily decompose or settle for extended time periods of up to about one year.
PRIOR ART
Ink jet printing can be considered a non-impact method that produces droplets of ink that are deposited on a substrate, such as paper or transparent film, in response to an electronic digital signal. Thermal or bubble jet dropon-demand ink jet printers are useful as outputs for personal computers in the office and in the home.
In existing thermal ink jet printing, the printhead typically comprises one or more ink jet ejectors, such as disclosed in U.S. Pat. No. 4,463,359, the disclosure of which is totally incorporated herein by reference, each ejector including a channel communicating with an ink supply chamber, or manifold, at one end and having an opening at the opposite end, referred to as a nozzle. A thermal energy generator, usually a resistor, is located in each of the channels a predetermined distance from the nozzles. The resistors are individually addressed with a current pulse to momentarily vaporize the ink and form a bubble which expels an ink droplet. As the bubble grows, the ink rapidly bulges from the nozzle and is momentarily contained by the surface tension of the ink as a meniscus. As the bubble begins to collapse, the ink remaining in the channel between the nozzle and bubble starts to move toward the collapsing bubble, causing a volumetric contraction of the ink at the nozzle and resulting in the separation from the nozzle of the bulging ink as a droplet. The feed of additional ink provides the momentum and velocity for propelling the droplet towards a print sheet, such as a piece of paper. Since the droplet of ink is emitted only when the resistor is actuated, this type of thermal ink jet printing is known as “drop-on-demand” printing. Other types of ink jet printing, such as continuous-stream or acoustic, are also known.
Ink jet inks, and processes thereof are illustrated, for example, in U.S. Pat. Nos. 4,840,674; 5,021,802; 5,041,161; 4,853,036; 5,124,718; 5,065,167 and 5,043,084, the disclosures of which are totally incorporated herein by reference.
In a single-color ink jet printing apparatus, the printhead typically comprises a linear array of ejectors, and the printhead is moved relative to the surface of the print sheet, either by moving the print sheet relative to a stationary printhead, or vice-versa, or both. In some systems, a relatively small printhead moves across a print sheet numerous times in swathes, much like a typewriter. Altematively, a printhead, which consists of an array of ejectors and extends the full width of the print sheet, may be passed once down the print sheet to give full-page images in what is known as a “full-width array” (FWA) printer. When the printhead and the print sheet are moved relative to each other, imagewise digital data is used to selectively activate the thermal energy generators in the printhead to permit the desired image to be created on the print sheet.
With the demand for higher resolution printers, the nozzles in ink jet printers are decreasing in size. Nozzle openings are typically about 50 to 80 micrometers in width or diameter for 300 spi printers. With the advent of 600 spi printers, these nozzle openings are typically about 10 to about 40 micrometers in width or diameter. These small dimensions require inks that do not plug the small openings.
Therefore, an important requirement for ink jet ink is the ability of the ink to be stable with minimal or no settling, the ability of the ink to remain in a fluid condition in a printhead opening on exposure to air, and moreover, wherein when the inks are selected for ink jet printing there is minimized paper curl, or wherein paper curl can be controlled.
Another important measured property for an ink jet ink is the latency or decap time, which is the length of time over which an ink remains fluid in a printhead opening or nozzle when exposed to air and, therefore, is capable of firing a drop of ink at its intended target. Latency is the maximum idling times allowed for ink to be jetted by a printer with a speed equal to or greater than 5 m/s (equivalent to an ink traveling a distance of 0.5 millimeter in less than 100 is) without a failure. This measurement can be accomplished with the pri

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink compositions comprising a latex and processes thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink compositions comprising a latex and processes thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink compositions comprising a latex and processes thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2446685

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.