Fluid processing system

Gas and liquid contact apparatus – Contact devices – Rotating gases

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S203120, C261SDIG006

Reexamination Certificate

active

06244573

ABSTRACT:

TECHNICAL FIELD
This invention relates to fluid vaporizing and homogenizing devices, to systems for vaporizing and homogenizing fluids, and more particularly to devices and systems for producing finely homogenized or vaporized gas-phase fluid mixtures.
BACKGROUND OF THE INVENTION
Many types of devices have been developed over the years for the purpose of converting liquids or aerosols into gas-phase fluids. Many such devices have been developed to prepare fuel for use in internal combustion engines. To optimize fuel oxidation within an engine's combustion chamber, the fuel/air mixture commonly must be further vaporized or homogenized to achieve a chemically stoichiometric gas-phase mixture. Ideal fuel oxidation results in more complete combustion and lower pollution.
More specifically, relative to internal combustion engines, stoichiometricity is a condition where the amount of oxygen required to completely burn a given amount of fuel is supplied in a homogeneous mixture resulting in optimally correct combustion with no residues remaining from incomplete or inefficient oxidation. Ideally, the fuel should be completely vaporized, intermixed with air, and homogenized prior to entering the combustion chamber for proper oxidation. Non-vaporized fuel droplets generally do not ignite and combust completely in conventional internal and external combustion engines, which presents problems relating to fuel efficiency and pollution.
Incomplete or inefficient oxidation of fuel causes exhaustion of residues from the internal or external combustion engine as pollutants, such as unburned hydrocarbons, carbon monoxide, and aldehydes, with accompanying production of oxides of nitrogen. To meet emission standards, these residues must be dealt with, typically requiring further treatment in a catalytic converter or a scrubber. Such treatment of these residues results in additional fuel costs to operate the catalytic converter or scrubber. Accordingly, any reduction in residues resulting from incomplete combustion would be economically and environmentally beneficial.
Aside from the problems discussed above, a fuel-air mixture that is not completely vaporized and chemically stoichiometric causes the combustion engine to perform inefficiently. Since a smaller portion of the fuel's chemical energy is converted to mechanical energy, fuel energy is wasted thereby generating unnecessary heat and pollution. Thus, by further breaking down and more completely vaporizing the fuel-air mixture, higher engine efficiency may be obtained.
Attempts have been made to alleviate the above-described problems with respect to fuel vaporizaton and incomplete fuel combustion. For example, U.S. Pat. No. 4,515,734, U.S. Pat No. 4,568,500, U.S. Pat. No. 5,512,216, U.S. Pat. No. 5,472,645, and U.S. Pat. No. 5,672,187 disclose various devices which vaporize fuel as it is being provided to the intake manifold of an engine. These prior devices generally involve a series of mixing sites and a venturi for vaporizing fuel and air.
It should be noted that the above-mentioned prior devices provide certain advantages in the operation of a combustion engine by allowing a relatively high degree of hydrocarbon burning in an associated engine. Nevertheless, there are certain problems with these prior devices.
First, the apertures for inputting air into the vortex chambers are arranged in a single column of three apertures. This manner of introducing air into the vortex chambers may cause the fluid within the vortex chamber to separate into discrete rings of fluid along the inner wall of the vortex chamber. Typically, one such ring will be associated with one of the apertures. The tendency for fluids collect in rings along the vortex chamber walls necessarily limits the degree of turbulence (and thus the efficiency of vaporization) within a given vortex chamber.
Additionally, prior devices have employed vortex chambers that have smooth, cylindrical inner walls. A smooth vortex chamber inner wall construction may limit the degree of turbulence within a given chamber and the effective rate of vaporization within the vortex chambers.
Another perceived shortcoming of prior devices is their inability to compensate for differential pressures at the various inlets leading to the vortex chamber. As the air/fuel mixture passes through the various vortex chambers, additional air is tangentially added in each chamber which causes a pressure differential at the various inlets. By supplying ambient air at all of these inlets to the vortex chamber, it has been difficult to maintain an optimal air-to-fuel ratio of the air/fuel mixture as the mixture passes through the vortex chambers.
Yet another aspect of the pressure differential problem associated with prior known devices is that there is a tendency for the vortex chambers positioned closer to the low pressure end of the flow path (closer to the engine manifold) to dominate the other vortex chambers by receiving substantially more flow. This tendency is particularly noticeable and problematic during periods of engine acceleration. As the vortex chambers closer to low pressure end of the flow path dominate the other vortex chambers, the effectiveness of the other vortex chambers is significantly reduced.
The prior centrifuge vaporization devices also have certain limitations, such as being too voluminous, failing to effectively introduce fluid into the centrifuge chamber tangentially, unnecessarily inhibiting the drawing power of the engine manifold vacuum, and unevenly discharging the centrifuge contents into the engine manifold.
An additional limitation of prior centrifuge vaporization devices has been their failure to adequately mix ambient air with fuel prior to adding the air and fuel into the vortex chamber. Absent adequate air/fuel premixing, excessive hydrocarbons are produced. Prior attempts to solve this problem have proven ineffective in that, even if fuel in a gaseous or aerosol state is sprayed into an air flow stream, the fuel subsequently liquefies prior to entering into the vortex chamber, thus nullifying any advantage obtained by spraying a gaseous or aerosol fuel into an air stream.
A further problem of prior centrifuge vaporization devices has been their failure to provide a venturi configuration which is large enough to attain volumetric efficiencies at high RPM's, yet small enough to get high resolution responses at lower RPM's. Indeed, the prior devices have generally had to choose between volumetric efficiency at high RPM's and high resolution response at lower RPM's. A need exists, therefore, for a centrifuge vaporization device which can attain volumetric efficiency at high RPM's and high resolution response at lower RPM's.
Yet another problem concerning prior cyclone vaporization devices is that they have failed to appreciate or utilize the advantages associated with adjustable vortex chamber output ports and adjacent chambers of different diameters.
Another problem, different from applications of vortex technology to internal combustion engines, relates to the extreme vaporization needed for various medications administered via inhalers An inhaler typically produces a liquid/gas mixture of the medication for inhaling directly into the lungs. Problems have arisen, however, in that the high degree of vaporization required for directly passing the medication through the lungs into the bloodstream has been difficult to achieve. That is, excess amounts of the medication remain liquefied, rather than being further broken down into smaller molecular size particles, for passing immediately through the lungs into the bloodstream. A need exists, therefore, to develop certain vaporization devices that will further vaporize and homogenize liquid/gas mixtures into a vapor of sufficiently small vapor particles for administering medication directly into the bloodstream via the lungs.
Still another need exists with respect to utilization of a breakdown process for incineration and waste management. To the extent waste fluid particles can be broken d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid processing system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid processing system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid processing system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2442022

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.