Organic thin film transistor having a phthalocyanine semiconduct

Active solid-state devices (e.g. – transistors – solid-state diode – Organic semiconductor material

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257 66, 257 75, 438 99, H01L 3524, H01L 5100

Patent

active

059693762

ABSTRACT:
Thin film transistors in which the active layer is an ordered film of a pthalocyanine coordination compound with a field-effect mobility greater than 10.sup.-3 cm.sup.2 /Vs and a conductivity in the range of about 10.sup.-9 S/cm to about 10.sup.-7 S/cm at 20.degree. C. are disclosed. Examples of suitable pthalocyanines include copper pthalocyanine, zinc pthalocyanine, hydrogen pthalocyanine, and tin pthalocyanine. Thin film devices made of these materials have an on/off ratio of at least about 10.sup.4. It is advantageous if the device is fabricated using a process in which the substrate is heated to a temperature in the range of about 30.degree. C. to about 200.degree. C. when the film is formed thereon.

REFERENCES:
patent: 4971977 (1990-11-01), Turano
patent: 5039561 (1991-08-01), Debe
patent: 5280183 (1994-01-01), Batzel et al.
patent: 5294820 (1994-03-01), Gemma et al.
patent: 5546889 (1996-08-01), Wakita et al.
patent: 5629530 (1997-05-01), Brown et al.
patent: 5705826 (1998-01-01), Aratani et al.
Hirabaru et al., "Thermal Behavior of Thin Copper-Phthalocyanin Films," Vacuum (Japan) 22(7) 273, 1-5, Jan. 24, 1979.
Guillaud et al., Transient Properties of Nickel Phthalocyanine Thin Film Transistors, Chemical Physics Letters 219, pp. 123-126, Mar. 4, 1994.
Koezuka et al., Polythiophene Field-Effect Transistor with Polypyrrole Worked as Source and Drain Electrodes, Applied Physics Letters, vol. 62, pp. 1794-1796, Apr. 12, 1993.
Komiyama et al., Preparation of Highly Ordered Ultrathin Films of Copper(II) Phthalocyanine on Amorphous Substrates by Molecular Beam Depositiion, Jan. 28, 1997.
"Organic Field-Effect Transistors with High Mobility Based on Copper Phthalocyanine", by Bao, Z. et al., Appl. Phys. Lett., 69(20), pp. 3066-3068 (Nov. 11, 1996).
"The Operation and Characteristics of Diphthalocyanine Field-Effect Transistors", by Clarisse, C. et al., J. Appl. Phys., 69(5), pp. 3324-3327 (Mar. 1, 1991).
"Transient Behaviour of Thin Film Transistors Based on Nickel Phthalocyanine", by Guillard, G., Thin Solid Films, vol. 258, pp. 279-282 (Mar. 15, 1995).
"Effect of Crystalinity on Electrical Conductivity of a Cu-Phthalocyanine Film", by Masui, M. et al., Trans. of the Inst. of Electrical Engineers of Japan, Part A, vol. 112-A, No. 5, pp. 371-374 (May 1992).
"Preparation of Highly Ordered Ultrathin Films of Copper (11) Phthalocyanine on Amorphous Substrates by Molecular Beam Deposition," by Komiyama, M. et al. Thin Solid Films, 151, pp. 1.109-1.110 (1987).
"Organic-Thin-Film-Induced Molecular Epitaxy From the Vapor Phase", by Debe, M. K., Thin Solid Films, 197, pp. 336-347 (1991).
"Transport Properties of Nickel Phthalocyanine Thin Films Using Gold Electrodes," by Abdel-Malik, T. G. et al., Thin Solid Films, 256, 139-142 (1995).
"The First Field Effect Transistor Based on an Intrinsic Molecular Semiconductor," by Madru, M. et al., Chemical Physics Letters, vol. 42, No. 1.2, pp. 103-105 (Dec. 4, 1987).
"Transient Properties of Nickel Phthalocyanine Thin Film Transistors", by Guillard, G. et al., Chemical Physics Letters, 219, pp. 12-126 (Mar. 4, 1994).
"Field-Effect Transistor with Polythiophene Thin Films," by Koezuka, H. et al., Synthetic Metals, 18, pp. 699-705 (1987).
"A Universal Relation Between Conductivity and Field-Effect Mobility in Doped Amorphous Organic Semiconductors", by Brown, A. R. et al., Synthetic Metals, 68, pp. 65-70 (1994).
"Macromolecular Electronic Device: Field-Effect Transistor with a Polythiophene Thin Film, " by Tsumura, A. et al., Applied Physics Letters, 49(18), pp. 1210-1212 (Nov. 1986).
"Field-Effect Transistors Based on Intrinsic Molecular Semiconductors", by Guillaud, G., et al., Chemical Physics Letters, vol. 167, 6, pp. 503-506 (Apr. 1990).
"Polythiophene Field-Effect Transistor with Polypyrrole Worked as Source and Drain Electrodes," by Koezuka, H. et al., Applied Physics Letters, 62 (15), pp. 1794-1796 (Apr. 1993).
"Thin-Film Transistors Based on Nickel Phthalocyanine", by Guillard, G. et al., Journal of Applied Physics, 66, (9), pp. 4554-4556 (Nov. 1989).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Organic thin film transistor having a phthalocyanine semiconduct does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Organic thin film transistor having a phthalocyanine semiconduct, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic thin film transistor having a phthalocyanine semiconduct will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2059128

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.