Photodetector with a resonant cavity

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Heterojunction

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257 17, 257 21, 257 22, 257458, H01L 2714

Patent

active

053151283

ABSTRACT:
Described is a resonant-cavity p-i-n photodetector based on the reflection or transmission through a Fabry-Perot cavity incorporating non-epitaxial, amorphous layers with alternating refractive index difference which layers are electron-beam deposited on a light-gathering side of a commercially available photodetector. The materials of the Fabry-Perot cavity are selectable from materials, refractive indices of which fall within a large range (from n=1.26 for CaF.sub.2 to n=3.5 for Si) preferably from materials which are depositable in an amorphous state. The material combinations are selected so that only wavelengths resonant with the cavity mode will be detected. The microcavity of the RC-PIN design can also be deposited on any existing detector structure, without modification of semiconductor growth. Such a photodetector would be useful for wavelength de-multiplexing applications. The ease of layer deposition, as well as the high degree of tailorability of spectral position, spectral detection width, and maximum numerical aperture of efficient detection, make the RC-PIN attractive for use in wavelength demultiplexing applications. An exemplary RC-PIN photodetector includes a Si/SiO.sub.2 Fabry-Perot cavity electron-beam deposited on the InP substrate of a commercial InGaAs photodetector. The detection efficiency relative to a reference device was 52 percent at the resonant wavelength of 1350 nm, with a resonance width of 14 nm, and a 4 percent response for off-resonance wavelengths in the 1100-1700 nm range.

REFERENCES:
patent: 4790635 (1988-12-01), Apseley
patent: 4861976 (1989-08-01), Jewell et al.
patent: 5229627 (1993-07-01), Kosaka
Kishino et al., "Resonant Cavity-Enhanced (RCE) Photodetectors", IEEE Journal of Quantum Electronics, vol. 27, No. 8, Aug. 1991, pp. 2025-2034.
Chin et al., "Multilayer Reflectors by Molecular-Beam Epitaxy for Resonance Enhanced Absorption in Thin High-Speed Detectors," J. Vac. Sci. Technol. B 8(2), Mar./Apr. 1990, pp. 339-342.
Dentai et al., "High Quantum Efficiency, Long Wavelength InP/InGaAs Microcavity Photodiode," Electronics Letters, vol. 27, No. 23, Nov. 7, 1991, pp. 2125-2126.
Prank et al., "Metal-Semiconductor-Metal Photodetector with Integrated Fabry-Perot Resonator for Wavelength Demultiplexing High Bandwidth Receivers," Appl. Phys. Lett. 62(2), Jan. 11, 1993, pp. 129-130.
Unlu et al., "A Theoretical Study of Resonant Cavity-Enhanced Photodetectors with Ge and Si Active Regions," J. Appl. Phys. 71(8), Apr. 15, 1992, pp. 4049-4058.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photodetector with a resonant cavity does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photodetector with a resonant cavity, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photodetector with a resonant cavity will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1974596

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.