Multivalent antigen-binding proteins

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Blood proteins or globulins – e.g. – proteoglycans – platelet...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4241331, 4241341, 4241351, 4241361, 435 696, 4351722, 4351723, 435328, C12P 2108

Patent

active

058696202

ABSTRACT:
Compositions of, genetic constructions coding for, and methods for producing multivalent antigen-binding proteins are described and claimed. The methods include purification of compositions containing both monomeric and multivalent forms of single polypeptide chain molecules, and production of multivalent proteins from purified monomers. Production of multivalent proteins may occur by a concentration-dependent association of monomeric proteins, or by rearrangement of regions involving dissociation followed by reassociation of different regions. Bivalent proteins, including homobivalent and heterobivalent proteins, are made in the present invention. Genetic sequences coding for bivalent single-chain antigen-binding proteins are disclosed. Uses include all those appropriate for monoclonal and polyclonal antibodies and fragments thereof, including use as a bispecific antigen-binding molecule.

REFERENCES:
patent: 4085443 (1978-04-01), Dubois et al.
patent: 4266253 (1981-05-01), Matherat
patent: 4355023 (1982-10-01), Ehrlich et al.
patent: 4414629 (1983-11-01), Waite
patent: 4434156 (1984-02-01), Trowbridge
patent: 4444878 (1984-04-01), Paulus
patent: 4470925 (1984-09-01), Auditore-Hargreaves
patent: 4479895 (1984-10-01), Auditore-Hargreaves
patent: 4642334 (1987-02-01), Moore et al.
patent: 4704692 (1987-11-01), Ladner
patent: 4816397 (1989-03-01), Boss et al.
patent: 4816567 (1989-03-01), Cabilly et al.
patent: 4853871 (1989-08-01), Pantoliano et al.
patent: 4908773 (1990-03-01), Pantoliano et al.
patent: 4939666 (1990-07-01), Hardman
patent: 4946778 (1990-08-01), Ladner et al.
patent: 5091513 (1992-02-01), Huston et al.
patent: 5132405 (1992-07-01), Huston et al.
patent: 5258498 (1993-11-01), Huston et al.
patent: 5260203 (1993-11-01), Ladner et al.
patent: 5476786 (1995-12-01), Huston
patent: 5534254 (1996-07-01), Huston et al.
patent: 5591828 (1997-01-01), Bosslet et al.
Whitlow, M. and Filpula, D., "Single-Chain Fv Proteins and Their Fusion Proteins," Methods: A Companion to Methods in Enzymology 2(2):97-105 (Apr. 1991).
Holliger, P. et al., "`Diabodies`: Small bivalent and bispecific antibody fragments," Proc. Natl. Acad. Sci. USA 90:6444-6448 (Jul. 1993).
McGuinness, B. T. et al., "Phage diabody repertoires for selection of large numbers of bispecific antibody fragments," Nature Biotechnol. 14:1149-1154 (Sep. 1996).
Zhu, Z. et al., "High Level Secretion of a Humanized Bispecific Diabody from Escherichia coli," Bio/Technol. 14:192-196 (Feb. 1996).
McNeill, D. and Freiberger, P., "Fuzzy Delphi," in: Fuzzy Logic, pp. 209-227, Simon & Schuster, New York (1993).
"Nothing to lose but their chains," The Economist (Feb. 27, 1988).
Ahlem et al., "Regiospecific Coupling of FAB' Fragments for the Production of Synthetic Bifunctional Antibodies," Targeted Cellular Cytotoxicity and Bispecific Antibodies, Annapolis, MD, Poster No. 18 (Oct. 22-25, 1989).
Aldred et al., "Synthesis of rat transferrin in Escherichia coli containing a recombinant bacteriophage," Chem. Abstracts 101:189 Abstract No. 185187m (1984).
Andrew et al., "Production of a Single Chain Bispecific Antibody by Recombinant DNA Technology," Second Intl. Conf. on Bispecific Antibodies and Targeted Cellular Cytotox., Seillac, France, Poster No. 21 (Oct. 9-13, 1990).
Aussage et al., "Bispecific Heteroconjugate of Anti-HB's and Anti-Fc .gamma. RI Prepared by SPDP Method: Production and Bispecificity Analysis," Second Intl. Conf. on Bispecific Antibodies and Targeted Cellular Cytotox., Seillac, France, Poster No. 41 (Oct. 9-13, 1990).
Bedzyk et al., "Immunological and Structural Characterization of a High Affinity Anti-fluorescein Single-chain Antibody," J. Biol. Chem. 265(30):18615-18620 (1990).
Bird et al., "Single-Chain Antigen-Binding Proteins," Science 242:423-426 1988).
Bishop, J.E., "Proteins Made by Genex Could Compete With Far Larger Monoclonal Antibodies," The Wall Street Journal (Oct. 21, 1988).
Boss et al., "Assembly of functional antibodies from immunoglobulin heavy and light chains synthesised in E. coli," Nucleic Acids Res. 12(9):3791-3806 (1985).
Boulianne et al., "Production of functional chimaeric mouse/human antibody," Nature 312:643-646 (1984).
Brennan et al., "Preparation of Bispecific Antibodies by Chemical Recombination of Monoclonal Immunoglobulin G.sub.1 Fragments," Science 229:81-83 (1985).
Brewin-Wilson, D., "Cross-Linked Antibodies Turn Cytotoxic Cells against Cancer," Oncol. Biototech. News 3(6):7 (1989).
Colcher et al., "In Vivo Tumor Targeting of a Recombinant Single-Chain Antigen-Binding Protein," J. Natl. Cancer Inst. 82(14):1191-1197 (1990).
Corvalan, J.R.F. and Smith, W., "Construction and characterisation of a hybrid-hybrid monoclonal antibody recognising both carcinoembryonic antigen (CEA) and vinca alkaloids," Cancer Immunol. Immunother. 24:127-132 (1987).
Corvalan et al., "Tumour Therapy with Vinca Alkaloids Targeted by a Hybrid-Hybrid Monoclonal Antibody Recognising both CEA and Vinca Alkaloids," Intl. J. Cancer Supp. 2:22-25 (1988).
Cumber et al., "Comparative Stabilities in Vitro and in Vivo of a Recombinant Mouse Antibody FvCys Fragment and A bisFvCys Conjugate," J. Immunol. 149(1):120-126 (1992).
Davies, D.R. and Metzger, H., "Structural Basis of Antibody Function," Ann. Rev. Immunol. 1:87-177 (1983).
Field et al., "Miniantibodies produced in E. coli--Fusion protein expression using dual origin vector," Dialog File 357: Biotechnology Abstracts, Accession No. 89-05519 (1987).
Field et al., "Miniantibodies produced in E. coli--Hen egg lysozyme variable region monoclonal antibody gene cloning in E. coli," Dialog File 357: Biotechnology Abstracts, Accession No. 87-12016 (1987).
Foglesong et al., "Preparation and analysis of bifunctional immunoconjugates containing monoclonal antibodies OKT3 and BABR1," Cancer Immunol. Immunother. 30:177-184 (1989).
Foglesong et al., "Preparation and Characterization of Bifunctional Heteroconjugates Containing OKT3 and Antitumor Antibodies," Third Intl. Conf. on Monoclonal Antibody Immunoconjugates for Cancer, San Diego, CA, Abstract No. 65 (Feb. 4-6, 1988).
George et al., "Production of a Bispecific Antibody by Linkage of Two Recombinant Single Chain Fv Molecules," J. Cell. Biochem. Supp. 15E:127 Abstract No. N206 (1991).
Ghetie, v. and Moraru, I., "Preparation and Applications of Multivalent Antibodies with Dual Specificity," Meth. Enzymol. 92:523-543 (1983).
Gilliland et al., "Bispecific Monoclonal Antibodies and Antibody Heteroconjugates for Enhancement of T Cell Activation and for Targeting Effector Activity Against HIV-Infected Cells," Targeted Cellular Cytotoxicity and Bispecific Antibodies, Annapolis, MD, Conf. Abstract (Oct. 22-25, 1989).
Glennie et al., "Bispecific and Trispecific Antibody Derivatives for the Retargeting of Cytotoxic T Cells," Targeted Cellular Cytotoxicity and Bispecific Antibodies, Annapolis, MD, Conf. Abstract (Oct. 22-25, 1989).
Glennie et al., "Preparation and Performance of Bispecific F(ab.sup.1 .gamma.).sub.2 Antibody Containing Thioether-Linked Fab '.gamma. Fragments," J. Immunol. 139(7):2367-2375 (1987).
Goldenberg et al., "Cancer Diagnosis and Therapy with Radiolabeled Antibodies," in: Immunoconjugates, Antibody Conjugates in Radioimaging and Therapy of Cancer, C.-W. Vogel, ed., Oxford University Press, NY, pp. 259-280 (1987).
Gorog et al., "Use of bispecific hybrid antibodies for the development of a homogeneous enzyme immunoassay," J. Immunol. Meth. 123:131-140 (1989).
Griffiths et al., "Human anti-self antibodies with high specificity from phage display libraries," EMBO J. 12(2):725-734 (1993).
Herron, J.N., "Equilibrium and Kinetic Methodology for the Measurement of Binding Properties in Monoclonal and Polyclonal Populations of Antifluorescyl-IgG Antibodies," in: Fluorescein Hapten: An Immunological Probe, E.W. Voss, ed., CRC Press, Boca Raton, FL, pp. 49-76 (1984).
Honda et al., "A human hybrid hybridoma producing a bispecific monoclonal antibody that can target tumor cells for attack by Pseudomonas aeruginosa exotoxin A," Cytotechnology 4:59-68 (1990).
Huber, R. "Structural Basis for Antigen-Antibody Recognition,"

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Multivalent antigen-binding proteins does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Multivalent antigen-binding proteins, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Multivalent antigen-binding proteins will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1949404

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.