Human therapeutic uses of BPI protein products

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

514 21, 514921, 530324, 530350, 530351, 530830, 424 851, 424 852, 424529, 424534, A61K 3800, A61K 4505

Patent

active

057536201

ABSTRACT:
Disclosed are methods for treatment of humans exposed to bacterial endotoxin in circulation by administration of bactericidal/permeability-increasing (BPI) protein products. Serologically and hematologically verifiable alleviation of endotoxin mediated increases in circulating cytokines, fibrinolysis and coagulation factors and changes in lymphocyte counts are observed upon such treatment. Also observed is alleviation of endotoxin mediated decreases in systemic vascular resistance index (SVRI) and concomitant increases in cardiac index (CI).

REFERENCES:
patent: 5089274 (1992-02-01), Marra et al.
patent: 5171739 (1992-12-01), Scott
patent: 5198541 (1993-03-01), Elsbach et al.
patent: 5234912 (1993-08-01), Marra et al.
patent: 5308834 (1994-05-01), Scott et al.
patent: 5334584 (1994-08-01), Scott et al.
patent: 5348942 (1994-09-01), Little, II et al.
Ammons et al., "Protective Effects of an N-Terminal Fragment of Bactericidal/Permeability-Increasing Protein in Rodent Models of Gram-Negative Sepsis: Role of Bactericidal Properties," J. Infect. Dis., 170(6):1473-82 (Dec. 1994).
Ammons et al., "Protective Effects of an N-Terminal Fragment of Bactericidal/Permeability-Increasing Protein in Endotoxemia and Gram-Negative Sepsis," Novel Therapeutics Strategies in the Treatment of Sepsis, pp. 55-70 (1996).
Ammons et al., "An N-Terminal Fragment of Bactericidal/Permeability-Increasing Protein Protects against Hemodynamic and Metabolic Derangements in Rat Gram-Negative Sepsis," J. Endotoxin Res., 3(1):57-66 (1996).
Boermeester et al., "Liver Failure Induces a Systemic Inflammatory Response," Amer. J. Pathology, 147(5):1428-1440 (Nov. 1995).
Evans et al., "Protective Effects of a Recombinant Amino-Terminal of Human Bactericidal/Permeability-Increasing Protein in an Animal Model of Gram-Negative Sepsis," J. Infect. Dis., 171:153-60 (Jan. 1995).
Kohn et al., "Role of Endotoxin in Acute Inflammation Induced by Gram-Negative Bacteria:Specific Inhibition of Lipopolysaccharide-Mediated Responses with an Amino-Terminal Fragment of Bactericidal/Permeability-Increasing Protein," Infect. Immun., 63(1):333-339 (Jan. 1995).
Koyama et al., "rBPI.sub.23 Attenuates Endotoxin-Induced Cardiovascular Depression in Awake Rabbits," Shock, 4(1):74-78 (Jul. 1995).
Kung et al., "Efficacy of a recombinant terminal fragment of bactericidal/permeability increasing protein in rodents challenged with LPS or E. coli bacteria," In Bacterial Endotoxins: Basic Science to Anti-Sepsis Strategies, Wiley-Liss, New York, pp. 255-263 (1994).
Lechner et al., "The Recombinant 23-kDa N-Terminal Fragment of Bactericidal/Permeability-Increasing Protein (rBPI.sub.23) Decreases Escherichia Coli-Induced Mortality and Organ Injury During Immunosuppression-Related Neutropenia," Shock, 4(4):298-306 (Nov. 1995).
Litchman et al., "Reactivation of Arthritis Induced by Small Bowel Bacterial Overgrowth in Rats: Role of Cytokines, Bacteria, and Bacterial Polymers," Infect. Immun., 63(6):2295-2301 (Jun. 1995).
Lin et al., "Protective Effects of a Recombinant N-Terminal Fragment of Bactericidal/Permeability Increasing Protein on Endotoxic Shock in Conscious Rabbits," Shock, 2(5):324-331 (Nov. 1994).
Lin et al., "Protective Effect Of A Recombinant Fragment Of Bactericidal/Permeability Increasing Protein Against Carbohydrate Dyshomeostasis And Tumor Necrosis Factor-.alpha. Elevation In Rate Endotoxemia," Biochem. Pharmacol. 47(9):1553-1559 (Apr. 1994).
Lin et al., "Synergistic Effect of a Recombinant N-Terminal Fragment of Bactericidal/Permeability-Increasing Protein and Cefamandole in Treatment of Rabbit Gram-Negative Sepsis," Antimicrobial Agents and Chemotherapy, 40(1):65-69 (Jan. 1996).
Schlag et al., "Protective Effect of Bactericidal/Permeability-Increasing Protein (rBPI.sub.21) on Sepsis Induced Organ Failure in Nonhuman Primates", SHOCK Conference, Ashville, N.C. Jun. 11-14, 1995.
VanderMeer et al., "Bactericidal/Permeability-Increasing Protein Ameliorates Acute Lung Injury in Porcine Endotoxemia," J. Infect. Dis., 172(1):2006-14 (May 1994).
Yao et al., "Pathogenesis of Hemorrhage-Induced Bacteria/Endotoxin Translocation in Rats," Annals Surg., 221(4):398-405 (Apr. 1995).
Boermeester et al. Abstract, "Bactericidal/permeability-increasing protein (BPI) prevents hemodynamic and metabolic derangements following partial hepatectomy", presented at Dutch Society of Gastroenterology Meeting, Oct. 7, 1993.
van Leeuwan et al., "Hepatic failure and coma after liver resection is reversed by manipulation of gut contents: The role of endotoxin", Surgery, 110(2):169-175 (Aug. 1991).
Petros et al., "Effects of a nitric oxide synthase inhibitor in humans with septic shock", Cardiovascular Research, 28:34-39 (1994).
Barron, "Pathophysiology of Septic Shock and Implications for Therapy", Clinical Pharmacy, 12(11):829-845 (Nov. 1993).
Meszaros et al., "A Recombinant Amino Terminal Fragment of Bactericidal/Permeability-Increasing Protein Inhibits the Induction of Leukocyte Responses by LPS", J. Leukocyte Biol., 54(6):558-563 (Dec. 1993).
Ammons et al., "Recombinant Amino Terminal Fragment of Bactericidal/Permeability Increasing Protein Prevents Hemodynamic Responses to Endotoxin", Circulatory Shock, 41:176-184 (1993).
Baggiolini et al., "Neutrophil-activating Peptide-1/Interleukin 8, a Novel Cytokine That Activates Neutrophils", J. Clin Invest., 84:1045-1049 (Oct., 1989).
Berry, "Cellular Biology of Endotoxin, Introduction" Handbook of Endotoxin, vol. 3, pp. xvii-xxi, (1985).
Bloom et al., "Serum Neopterin Levels Following Intraveous Endotoxin Administration to Normal Humans", Immunobiol., 181:317-323 (1990).
Bone et al., "Definitions for sepsis and organ failure", Critical Care Medicine, 20(6):724-726 (1992).
Bradley et al., "Hemodynamic Alterations in Normotensive and Hypertensive Subjects During the Pyrogenic Reaction", J. Clin. Invest., 24:749-758 (1945).
Brigham et al., "Endotoxin and Lung Injury", Rev. Respir. Dis., 133:913-927 (1986).
Boujoukos et al., "Compartmentalization of the acute cytokine response in humans after intravenous endotoxin administration", J. Appl. Physiol., 74:3027-3033 (1993).
Boujoukos et al., "Detection of Interleukin-8 in Bronchoalveolar Lavage Without Alveolar Neutrophil Influx, Before and After Intravenous Endotoxin in Normal Humans", Am. Rev. Resp. Dis., 145(4):A441 (Apr., 1992).
Calandra et al., "Prognostic Values of Tumor Necrosis Factor/Cachectin, Interleukin-1, Interferon-.alpha., and Interferon-.mu. in the Serum of Patients with Septic Shock", J. Infectious Diseases, 161:982-987 (1990).
Calandra et al., "High Circulating Levels of Interleukin-6 in Patients with Septic Shock: Evolution During Sepsis, Prognostic Value, and Interplay with Other Cytokines", Am. J. Medicine, 91:23-29 (Jul. 1991).
Canon et al., "Circulating Interleukin 1 and Tumor Necrosis Factor in Septic Shock and Experimental Endotoxin Fever", J. Infection Diseases, 161:79-84 (1990).
Cochrane, "The Enhancement of Inflammatory Injury", Am. Rev. Respir. Dis., 136:1-2 (1980).
Colman, "Surface-mediated Defense Reactions, The Plasma Contact Activation System", J. Clin. Invest., 73:1249-1253 (May 1984).
Danner et al., "Endotoxemia in Human Septic Shock", Chest, 99:169-175 (Jan. 1991).
DeLa Cadena et al., "Activation of the Kallikrein-Xn System After Endotoxin Administration to Normal Human Volunteers", Blood, 81(12):3313-3317 (Jun. 15, 1993).
Dinatello, "The Proinflamatory Cytokines Interleukin-1 and Tumor Necrosis Factor and Treatment of the Septic Shock Syndrome", J. Infection Diseases, 163:1177-1184 (1991).
Elin et al., "Effect of Induced Fever on Serum Iron and Ferritin Concentrations in Man", Blood, 49(1):147-153 (Jan. 1977).
Elsbach et al., "Separation and Purification of a Potent Bactericidal/Permeability Increasing Protein and a Closely Associated Phospholipase A2 from Rabbit Polymorphonuclear Leukocytes", J. Biol. Chem., 254:11000 (1979).
Elsbach et al., "Oxygen-Independent Antimicrobial Systems of Phagocytes" Inflammation: Basic Principles and Clinical Correlates, Chapter 30, pp. 603-636, 2nd Ed., (1990).
Fong et al., "Endotoxemia Elicits Increased Cui

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human therapeutic uses of BPI protein products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human therapeutic uses of BPI protein products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human therapeutic uses of BPI protein products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1853019

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.