Surgery – Truss – Pad
Patent
1995-06-01
1997-12-23
Smith, Ruth S.
Surgery
Truss
Pad
1286535, 324318, 324322, A61B 5055
Patent
active
056998015
ABSTRACT:
The invention provides a method for magnetic resonance imaging and spectroscopic analysis of the interior of a specimen which includes positioning the specimen within a main magnetic field, introducing an invasive probe having an elongated receiver coil into or adjacent to the specimen with the coil having at least one pair of elongated electrical conductors, preferably, generally parallel to each other disposed within a dielectric material and having a pair of ends electrically connected to each other. RF pulses are provided to the region of interest to excite magnetic resonance signals, gradient magnetic pulses are applied to the region of interest with the receiver coil receiving magnetic resonance signals and emitting responsive output signals which may be processed by a computer to provide image information for display in a desired manner. The method in a preferred form involves employing a flexible receiver coil which has uniform sensitivity along the coil and may be operated even when the magnetic resonance signal is in an oblique position. Tuning capacitance may be distributed along the length of the coil and/or a Faraday screen provided to minimize dielectric losses between the coil and the surrounding material of the specimen. The method may be used on a wide variety of specimens and in a preferred use is introduced into small blood vessels of a patient to facilitate determination of atherosclerotic plaque. Medical intervention procedures, such as plaque removal, may be employed generally simultaneously with the imaging of the present invention. Corresponding apparatus is provided.
REFERENCES:
patent: 4672972 (1987-06-01), Berke
patent: 4766381 (1988-08-01), Conturo et al.
patent: 4932411 (1990-06-01), Fritschy et al.
patent: 5170789 (1992-12-01), Narayan et al.
patent: 5271400 (1993-12-01), Dumoulin et al.
patent: 5293872 (1994-03-01), Alfano et al.
patent: 5307808 (1994-05-01), Dumoulin et al.
patent: 5473251 (1995-12-01), Mori
Kantor et al., "In vivo P Nuclear Magnetic Resonance Measurements in Cacine Heart Using a Catheter-Coil," Circulation Research, vol. 55, pp. 261, 266 (Aug. 1984).
Edelstein et al., "Electronic Decoupling of Surface-Coil Receivers for NMR Imaging and Spectroscopy," Journal of Magnetic Resonance, vol. 67, pp. 156-161 (1986).
Merickel et al., "Identification and 3-d Quantification of Atherosclerosis Using Magnetic Resonance Imaging," Comput. Biol. Med., vol. 18, pp. 89-102 (1988).
Martin et al., "Inflatable Surface Coil for MR Imaging of the Prostate", Radiology, Apr. 1988, pp. 260-270.
Maynor et al., "Chemical Shift Imaging of Atherosclerosis at 7.0 Tesla," Investigative Radiology, vol. 24, pp. 52-60 (1989).
Mohiaddin et al., "Chemical Shift Magnetic Resonance Imaging of Human Atheroma," Br. Heart J., vol. 62, pp. 81-89 (1989).
Asdente et al., "Evaluation of Atherosclerotic Lesions Using NMR Microimaging," Atherosclerosis, vol. 80, pp. 243-253 (1990).
Pearlman et al., "Nuclear Magnetic Resonance Microscopy of Atheroma in Human Coronary Arteries," Angiology, vol. 42, pp. 726-733 (1991).
Vinitski et al., "Magnetic Resonance Chemical Shift Imaging and Spectroscopy of Atherosclerotic Plaque," Investigative Radiology, vol. 26, pp. 703-714 (1991).
Waller et al., "Intravascular Ultrasound: A Histological Study of Vessel During Life," Circulation, vol. 85, pp. 2305-2310 (1992).
Martin et al., "MR Imaging of Blood Vessel with an Intravascular Coil," J. Magn. Reson. Imaging, vol. 2, pp. 421-429 (1992).
Hurst et al., "Intravascular (Catheter) NMR Receiver Probe: Preliminary Design Analysis and Application to Canine Iliofemoral Imaging," Magn. Reson, Med., vol. 24, pp. 343-357 (Apr. 1992).
Dumoulin et al., "Real-time Position Monitoring of Invasive Devices Using Magnetic Resonance," Magnetic Resonance in Medicine, vol. 29, pp. 411-415 (Mar. 1993).
Spears et al., "In Vivo Coronary Angioscopy," Journal of the American College of Cardiology, vol. 1, No. 5, pp. 1311-1314 (1983).
Koechli et al., "Catheters and Guide Wires for Use in an Echo-Planar MR Fluoroscopy System," R. 79th Scientific Meeting, editor, Radiology, vol. 189 (P), p. 319 (Nov. 1993).
Abstract, McDonald et al., "Performance Comparison of Several Coil Geometries for Use in Catheters," R. 79th Scientific Meeting, editor, Radiology, vol. 189(P) p. 319 (Nov. 1993).
Merickel et al., "Noninvasive Quantitative Evaluation of Atherosclerosis Using MRI and Image Analysis," Arteriosclerosis and Thrombosis, vol. 13, pp. 1180-1186 (1993).
Yuan et al., "Techniques for High-Resolution MR Imaging of Atherosclerotic Plaques," J. Magnetic Resonance Imaging, vol. 4, pp. 43-49 (1994).
Martin et al., "Intravascular MR Imaging in a Porcine Animal Model," Magn. Reson, Med. vol. 32, pp. 224-229 (Aug. 1994).
Atalar Ergin
Bottomley Paul A.
Zerhouni Elias A.
Silverman Arnold B.
Smith Ruth S.
The Johns Hopkins University
LandOfFree
Method of internal magnetic resonance imaging and spectroscopic does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method of internal magnetic resonance imaging and spectroscopic , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of internal magnetic resonance imaging and spectroscopic will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-1795336