Canine coronavirus S gene and uses therefor

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4242211, 4242041, 435 693, 4353201, 4352523, C07H 2104

Patent

active

060574364

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates generally to canine coronavirus infections, and specifically to proteins useful in prophylaxis, therapy, and diagnosis of these infections in canines.


BACKGROUND OF THE INVENTION

The coronaviruses are a large family of mammalian and avian pathogens which were first described in 1968. They are the causative agents of several diseases including encephalitis, hepatitis, peritonitis and gastroenteritis. Enteric coronaviruses have been detected in the feces of man, pigs, calves, cats, mice, chickens and dogs.
Canine coronavirus (CCV) enteritis was first isolated from dogs suffering an acute gastroenteritis, as reported by Binn et al., Proc. 78th Ann. Mtg. U.S. Animal Health Assoc., Roanoke Va., pp. 359-366 (1974). The disease became prevalent during the 1970s. CCV gastroenteritis appears to be primarily transmitted through fecal contamination from infected dogs via the oral route, leading ultimately to replication of the virus in the epithelial cells of the small intestine. Virus can be recovered from the feces of an infected dog between 3 and 14 days after infection.
CCV gastroenteritis is characterized by a mild depression, anorexia and loose stool from which the dog usually recovers. The onset of the disease is often sudden, accompanied by such symptoms as diarrhea, vomiting, excreted blood in stools, and dehydration. Deaths have occurred within as little as 24 to 36 hours after onset of clinical signs. Most dogs appear afebrile but elevated body temperature is seen in some cases. Often CCV will occur with a canine parvovirus infection and this coinfection can be fatal.
Serologically the disease is closely related to transmissible gastroenteritis virus of swine (TGEV). Although canine coronavirus does not infect pigs, transmissible gastroenteritis virus produces a subclinical infection in dogs. However, unlike the feline infectious peritonitis coronavirus (FIPV), previous exposure to CCV does not predispose dogs to enhanced disease; and antigen-antibody complexes, if formed, are not associated with disease pathology.
There remains a need in the art for compositions useful in diagnosing, treating and preventing infections with canine coronaviruses.


SUMMARY OF THE INVENTION

In one aspect the present invention provides the complete nucleotide sequence of the CCV S gene, strain 1-71, SEQ ID NO:1. The S gene or fragments thereof may be useful in diagnostic compositions for CCV infection.
In another aspect the present invention provides a CCV S (or spike) protein characterized by the amino acid sequence of a CCV S protein, SEQ ID NO:2, and peptide fragments thereof. These proteins may be optionally fused or linked to other fusion proteins or molecules.
Thus, in another aspect, the present invention provides a vaccine composition containing an effective immunogenic amount of at least one CCV S protein or an immunogenic fragment thereof.
In still another aspect, the invention provides a method of vaccinating an animal against infection with a coronavirus by administering an effective amount of a vaccine composition of this invention.
In yet a further aspect, the present invention provides a pharmaceutical composition for the treatment of CCV infection comprising a therapeutically effective amount of a CCV S peptide or protein of the invention and a pharmaceutically effective carrier.
Still another aspect of this invention is an antibody directed to CCV, which antibody is capable of distinguishing between CCV and other canine viruses. These antibodies may also be employed as diagnostic or therapeutic reagents.
In yet another aspect, a diagnostic reagent of the present invention comprises a CCV S protein or fragment thereof. In another aspect, the present invention provides a diagnostic reagent which comprises a nucleotide sequence which encodes a CCV S protein or fragment of the invention, and/or a nucleotide sequence which flanks the coding region, or fragments thereof. These protein and nucleotide sequences are optionally associated with detectable labels.

REFERENCES:
patent: 4567042 (1986-01-01), Acree et al.
patent: 4567043 (1986-01-01), Acree et al.
patent: 4824785 (1989-04-01), Acree et al.
patent: 4904468 (1990-02-01), Gill et al.
patent: 5013663 (1991-05-01), Acree et al.
patent: 5047238 (1991-09-01), Acree et al.
Raabe et al., 1990, "Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E", J. Gen. Virology 71:1065-1073.
Hohdatsu et al., 1991, "Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses", Arch. Virology 117:85-95.
Bae et al., 1991, "Differentiation of transmissible gastroenteritis virus from porcine respiratory coronavirus and other antigenically related coronaviruses by using cDNA probes specific for the 5' region of the S glycoprotein gene", J. Clin. Microbiology 29:215-218.
Harlow et al., 1988, "Antibodies: a laboratory manual" Cold Spring Harbor Laboratory, pp. 313-315.
Jacobs et al., Virus Research, 8 (1987) 363-371, "The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV)".
de Groot et al., J. Gen. Virology, 68 (1987) 2639-2646, "cDNA Cloning and Sequence Analysis of the Gene Encoding the Peplomer Protein of Feline Infectious Peritonitis Virus".
Luckow et al., Biotechnology, 6 (1988) 47-55, "Trends in the Development of Baculovirus Expression Vectors".
Binn et al., 1974, "Recovery and characterization of a coronavirus from military dogs with diarrhea", in: Proc. 78th Ann. Mtg. U.S. Animal Health Assoc.. Roanoke, Va., pp. 359-366.
Jacobs et al., 1987, "The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV)", Virus Res. 8:363-371.
Takahashi et al., 1990, "Induction of CD8.sup.+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs", Nature 344:873-875.
Vennema et al., 1990, "Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization", J. Virology 64:1407-1409.
Spaan, 1990, "Progress towards a coronavirus recombinant DNA vaccine", in: Coronaviruses and their diseases, Cavanagh and Brown (eds), Plenum Press, N.Y. pp. 201-203.
Young et al., 1983, "Efficient isolation of genes by using antibody probes", Proc. Natl. Acad. Sci. USA 80:1194-1198.
Lerner et al., 1983, "The development of synthetic vaccines", in: The biology of immunologic disease, Dixon and Fisher (eds), Sinauer Associates Publishing Co., Ma., pp. 331-338.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Canine coronavirus S gene and uses therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Canine coronavirus S gene and uses therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Canine coronavirus S gene and uses therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1594892

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.