Transferrin receptor specific antibody-neuropharmaceutical or di

Drug – bio-affecting and body treating compositions – Conjugate or complex of monoclonal or polyclonal antibody,...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424 941, 4241431, 514 12, 514 21, 530350, 5303871, 5303891, 5303911, 5303917, 5303919, 530394, 530399, A61K 3944, A61K 3827, C07K 1702, C07K 1628

Patent

active

058339884

ABSTRACT:
The present invention pertains to a method for delivering a neuropharmaceutical or diagnostic agent across the blood brain barrier to the brain of a host. The method comprises administering to the host a therapeutically effective amount of an antibody-neuropharmaceutical or diagnostic agent conjugate wherein the antibody is reactive with a transferrin receptor. Other aspects of this invention include a delivery system comprising an antibody reactive with a transferrin receptor linked to a neuropharmaceutical or diagnostic agent and methods for treating hosts afflicted with a disease associated with a neurological disorder.

REFERENCES:
patent: 4292425 (1981-09-01), Buckler et al.
patent: 4434156 (1984-02-01), Trowbridge
patent: 4444744 (1984-04-01), Goldenberg
patent: 4545985 (1985-10-01), Pastan et al.
patent: 4569789 (1986-02-01), Blattler et al.
patent: 4626507 (1986-12-01), Trowbridge et al.
patent: 4631190 (1986-12-01), Shen et al.
patent: 4801575 (1989-01-01), Pardridge
patent: 4886780 (1989-12-01), Faulk
patent: 4892827 (1990-01-01), Pastan et al.
patent: 4902505 (1990-02-01), Pardridge
patent: 4992255 (1991-02-01), Pardridge
patent: 5004697 (1991-04-01), Pardridge
patent: 5087616 (1992-02-01), Meyers et al.
patent: 5108987 (1992-04-01), Faulk
patent: 5130129 (1992-07-01), Pardridge
patent: 5154924 (1992-10-01), Friden
patent: 5182107 (1993-01-01), Friden
patent: 5527527 (1996-06-01), Friden
Trowbridge, I.S. et al., "Anti-Transferrin Receptor Monoclonal Antibody and Toxin-Antibody Conjugates Affect Growth of Human Tumour Cells", Nature, 294(12): 171-173 (Nov. 1981).
Domingo, D.L. et al., "Transferrin Receptor as a Target for Antibody-Drug Conjugates", Methods in Enzymology, 112: 238-247 (1985).
Zovickian, J. et al., "Potent and Specific Killing of Human Malignant Brain Tumor Cells by an Anti-Transferrin Receptor Antibody-Ricin Immunotoxin", J. Neurosurg., 66: 850-861 (1987).
Jeffries, W.A. et al., "Transferrin Receptor on Endothelium of Brain Capillaries", Nature, 312(8): 162-163 (1984).
Raso, V. et al., "Monensin is Obligatory for the Cytotoxic Action of a Disulfide Linked Methotrexate-Anti-Transferrin Receptor Conjugate", Biochem. Biophy. Res. Comm., 150(1): 104-110 (1988).
Bjorn, M.J. et al., "Immunotoxins to the Murine Transferrin Receptor: Intracavitary Therapy of Mice Bearing Syngeneic Peritoneal Tumors", Cancer Research 47(24, Pt.1): 6639-6645, (Dec. 15, 1971).
Smyth, M.J. et al., "The Mode of Action of Methotrexate-Monoclonal Antibody Conjugates" Immunol. Cell.Biol., 65(2): 189-200 (1987).
Pardridge, W.M. "Receptor-Mediated Peptide Transport through the Blood-Brain Barrier", Endocrine Reviews, 7(3): 314-330 (1986).
Sutherland, R. et al., "Ubiquitous Cell-Surface Glycoprotein on Tumor Cells is Proliferation-Associated Receptor for Transferrin", Proc. Nat'l Acad. Sci. USA, 78(7): 4515-4519 (Jul. 1981).
Shen, W.-C. et al., "CIS-Aconityl Spacer Between Daunomycin and Macromolecular Carriers: A Model of Ph-Sensitive Linkage Releasing Drug from a Lysosomotropic Conjugate" Biochem. and Biophys. Res. Comm. 2(3): 1048-1054 (Oct. 15, 1981).
Pietersz, G.A. et al., "Novel Synthesis and in vivo Characterization of Disulfide-linked Ricin-Monoclonal Antibody Conjugates Devoid of Galactose Binding Activity" Cancer Res., 48: 4469-4476 (1988).
Pietersz, G.A. et al., "The Use of Monoclonal Antibody Conjugates for the Diagnosis and Treatment of Cancer" Immunol. Cell Biol., 65(Pt. 2): 111-125 (1987).
Gascoigne, N.R.J. et al., "Secretion of a Chimeric T-Cell Receptor-Immunoglobulin Protein" Proc. Nat'l Acad. Sci. USA 84:2936-2940 (1987).
Baldwin, R.W. et al., "Monoclonal Antibodies for Radioimmunodetection of Tumours and for Targeting" Bull. Cancer (Paris) 70(2): 132-136 (1983).
Byrn, R.A. et al., "Biological Properties of a CD4 Immunoadhesin" Nature 344: 667-670 (1990).
Griffin, T.W. et al., "In Vitro Cytotoxicity of Recombinant Ricin A Chain-Antitransferrin Receptor Immunotoxin Against Human Adenocarcinomas of Colon and Pancreas" J. Biol. Res. Mod., 7: 559-567 (1988).
Alkan, S.S. et al., "Antiviral and Antiproliferative Effects of Interferons Delivered via Monoclonal Antibodies" J. Interferon Res., 4(3): 355-363 (1984).
Capon, D.J. et al., "Designing CD4 Immunoadhesins for AIDS Therapy" Nature 337: 525-531 (1989).
Dautry-Varsat, A. et al., "pH and the Recycling of Transferrin During Receptor-Mediated Endocytosis" Proc.Nat'l Acad. Sci. USA 80: 2258-2262 (Apr. 1983).
Herz, J. et al., "Low Density Lipoprotein Receptor-related Protein Mediates Endocytosis of Monoclonal Antibodies in Cultured Cells and Rabbit Liver" J. Biol. Chem. 265(34): 21355-21362 (Dec. 1990).
Fishman, J.B. et al., "Receptor-Mediated Transcytosis of Transferrin Across the Blood-Brain Barrier" J. Neur. Res., 18: 299-304 (1987).
Pardridge, W.M. et al., "Selective Transport of an Anti-transferrin Receptor Antibody through the Blood-Brain Barrier in vivo" J. Pharmacol. and Exp. Therapeutics 259(1): 66-70 (1991).
Morrison, S.L. et al., "Genetically Engineered Antibody Molecules: New Tools for Cancer Therapy" Cancer Investigation 6(2): 185-192 (1988).
Grob, P.M. et al., "Affinity Labeling and Partial Purification of Nerve Growth Factor Receptors from Rat Pheochromocytoma and Human Melanoma Cells," Proc. Natl. Acad. Sci. USA 80: 6819-6823 (Nov., 1983).
Batra, J.K. et al., "Single-Chain Immunotoxins Directed at the Human Transferrin Receptor Containing Pseudomonas Exotoxin A or Diptheria Toxin: Anti-TFR(Fv)-PE40 and DT388-Anti-TFR(Fv)" Molecular & Cellular Biology 11(4): 2200-2205 (Apr., 1991).
Batra, J.K. et al., "Antitumor Activity in Mice of an Immunotoxin Made with Anti-Transferrin Receptor and a Recombinant Form of Pseudomonas Exotoxin," Proc. Natl. Acad. Sci. USA, 86: 8545-8549 (Nov., 1989).
Junard et al., "Long-Term Administration of Mouse Nerve Growth Factor to Adult Rats with Partial Lesions of the Cholinergic Septohippocampal Pathway," Experimental Neurology 110: 25-38 (1990).
Olson et al., "Nerve Growth factor Affects .sup.11 C-nicotine Binding, Blood Flow, EEG, and Verbal Episodic Memory in an Alzheimer Patient (Case
Jeffries et al., "Analysis of Lymphopoietic Stem Cells with a Monoclonal Antibody to Rat Transferrin Receptor," Immunology 54: 333-341 (1985).
Eriksdotter-Nilsson et al., "Nerve Growth Factor Can Influence Growth of Cortex Cerebri and Hippocampus: Evidence from Intraoccular Grafts," Neuroscience 30(3): 755-766 (1989).
Kordower, J.H. et al., "Intravenous Administration of a Transferrin Receptor Antibody-Nerve Growth Factor Conjugate Prevents the Degeneration of Cholinergic Striatal Neurons in a Model of Huntington Disease," Proc. Natl. Acad. Sci. USA 91: 9077-9080 (Sep. 1994).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Transferrin receptor specific antibody-neuropharmaceutical or di does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Transferrin receptor specific antibody-neuropharmaceutical or di, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transferrin receptor specific antibody-neuropharmaceutical or di will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1514053

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.