Monolithic maleic anhydride drug delivery systems

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Implant or insert

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424426, 424486, 424501, 424443, 526936, A61K 916, A61K 922, A61K 924, A61K 952

Patent

active

054747805

DESCRIPTION:

BRIEF SUMMARY
FIELD OF THE INVENTION

The present invention relates in general to an erodible, sustained release polymeric drug delivery vehicle. More particularly, the present invention is directed to drug delivery systems including a homopolymer or copolymer of maleic anhydride or lower alkyl maleic anhydride intended for use in treating ocular conditions and in similar physiologic environments. The erodible polymer system simplifies the application and removal of the drug delivery system and may be configured to provide specific erosion profiles allowing drug delivery administration to be scheduled at convenient daily or weekly time intervals.


BACKGROUND OF THE INVENTION

A problem with the administration of many pharmaceutical medicaments and diagnostic compounds has been the need to retain sufficient quantities of these compounds in contact with the target tissues and systems for a sufficient period of time to accomplish the therapeutic or diagnostic purpose. This problem is particularly acute in connection with compounds administered to the eye. In the ocular environment, tear turnover and drainage through the lacrimal system quickly remove a major portion of any compound administered to the eye so that only a small fraction of the original dosage remains in the eye for an extended period of time. As a result, the repeated administration of relatively large dosages is required to compensate for this loss and to ensure that an effective concentration of the desired pharmaceutical agent remains in contact with the eye. Similar problems are also encountered in connection with the nasal mucosa, oral cavity and similar physiologic environments.
An alternative approach to ophthalmic drug retention in the eye has been the use of viscous ointments and gels designed to slow down the rapid loss of pharmaceutical compounds. These semi-solid drug containing compounds are applied directly to the conjunctiva of the eye and remain in the cul de sac until physically or mechanically removed. Though reasonably effective at retaining adequate drug dosages in contact with the surface of the eye, a major disadvantage associated with ointments and gels is the difficulty of delivering a controlled dosage with such widely variable systems. To date, it has not been possible to deliver preformed gels from multiple dose containers in a ready and convenient fashion. Moreover, previously known drug containing ointments and gels may form barriers to sight as well as forming aesthetically unpleasant crusting along the edges of the eyelids. This and possible blockage of the lacrimal duct may lead to decreased patient acceptability and utilization of such systems.
Another approach to the solution of these problems has been the utilization of drug containing ocular inserts. Typically, these devices are formed of microporous solid polymers incorporating a reservoir of the drug or diagnostic agent required. Shaped as a small disc, barrel or strip, these devices are inserted into the cul de sac of the eye where they remain for periods of several days or weeks while the pharmaceutical compounds contained therein continuously diffuse into the lacrimal fluids. A significant disadvantage associated with such solid insert devices is that many patients, especially the elderly, have a difficult time inserting or removing a solid object from the cul de sac of the eye. As a result, it is often necessary for medical personnel to position such devices as well as to remove them at the end of their useful life. What is more, currently available ocular inserts often fall out of position from the eye. Additionally, these devices may be uncomfortable when placed in the eye.
Another alternative approach to the solution of these problems has been the utilization of drug delivery compounds which are liquid at room temperature, but which form semi-solid compounds when warmed to body temperatures. Similarly, compositions which transform from liquids to semi-solids in response to changes in pH have also been proposed. Though effective at their intended purposes, such co

REFERENCES:
patent: 3993071 (1976-11-01), Higuchi et al.
patent: 4249531 (1981-02-01), Heller et al.
patent: 4304765 (1981-12-01), Shell et al.
patent: 4407792 (1983-10-01), Schoenwald et al.
patent: 4615697 (1986-10-01), Robinson
patent: 5173298 (1992-12-01), Meadows
Mortada, Sana A. M., et al., "Preparation of microcapsules from complex coacervation of Gantrez-gelatin. II. In vitro dissolution of nitrofurantoin microcapsules," J. Microencapsulation, 1987, vol. 4, No. 1, pp. 23-37.
Schoenwald, R. D., et al., "Influence of High-Viscosity Vehicles on Miotic Effect of Pilocarpine," J. of Pharm. Sciences, vol. 67, No. 9, Sep. 1978, pp. 1280-1283.
Mortada, Sana A., "Preparation of Microcapsules Using the n-Butyl Half-Ester of PVM/MA Coacervate System," Pharmazie, vol. 36, No. 6, 1981, pp. 420-423.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Monolithic maleic anhydride drug delivery systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Monolithic maleic anhydride drug delivery systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Monolithic maleic anhydride drug delivery systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1358420

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.