Immunological methods of detecting MN proteins and MN polypeptid

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5303877, 5303888, 5303897, G01N 3353

Patent

active

059898380

ABSTRACT:
A new gene--MN--and proteins/polypeptides encoded therefrom are disclosed. Recombinant nucleic acid molecules for expressing MN proteins/polypeptides and recombinant proteins are provided. Expression of the MN gene is disclosed as being associated with tumorigenicity, and the invention concerns methods and compositions for detecting and/or quantitating MN antigen and/or MN-specific antibodies in vertebrate samples that are diagnostic/prognostic for neoplastic and pre-neoplastic disease. Test kits embodying the immunoassays of this invention are provided. MN-specific antibodies are disclosed that can be used diagnostically/prognostically, therapeutically, for imaging, and/or for affinity purification of MN proteins/polypeptides. Also provided are nucleic acid probes for the MN gene as well as test kits comprising said probes. The invention also concerns vaccines comprising MN proteins/polypeptides which are effective to immunize a vertebrate against neoplastic diseases associated with the expression of MN proteins. The invention still further concerns antisense nucleic acid sequences that can be used to inhibit MN gene expression, and polymerase chain reaction (PCR) assays to detect genetic rearrangements.

REFERENCES:
patent: 5387676 (1995-02-01), Zavada et al.
Bander et al., "Renal cancer imaging with monoclonal antibody G250," Proc. Am. Urol. Assoc., 155 (Suppl.): 583A (Abstract 1088; May 1996).
Liao et al., "Identification of the MN/CA9 Protein As a Reliable Diagnostic Biomarker of Clear Cell Carcinoma of the Kidney," Cancer Research, 57: 2827-2831 (Jul. 15, 1997).
McKiernan et al., "Expression of the Tumor-associated Gene MN: A Potential Biomarker for Human Renal Cell Carcinoma," Cancer Research 57: 2362-2365 (Jun. 15, 1997).
Steffens et al., "Targeting of Renal Cell Carcinoma With Iodine-131-Labeled Chimeric Monoclonal Antibody G250," Journal of Clinical Oncology, 15(4): 1529-1537 (Apr. 1997).
Turner et al., "MN Antigen Expression in Normal, Preneoplastic, and Neoplastic Esophagus: A Clinicopathological Study of a New Cancer-Associated Biomarker," Hum Pathol, 28(6): 740-744 (Jun. 1997).
Uemura et al., "Expression of Tumor-Associated Antigen MN/G250 in Urologic Carcinoma: Potential Therapeutic Target," J. Urology:157 (4 Supp): 377 (Abstract 1475) (Apr. 16, 1997).
Brewer et al., "A Study of Biomarkers in Cervical Carcinoma and Clinical Correlation of the Novel Biomarker MN," Gynecologic Oncology, 63: 337-344 (1996).
Liao and Stanbridge, "Expression of the MN Antigen in Cervical Papanicolaou Smears Is an Early Diagnostic Biomarker of Cervical Dysplasia," Cancer Epidemiology, Biomarkers & Prevention, 5: 549-557 (Jul. 1996).
Divgi et al., "Scintigraphy of Renal Cell Carcinoma with I-131 Labelled Monoclonal Antibody (MAB) G250," European Journal of Nuclear Medicine, 19(8): 578 (Abstract) (Aug. 23, 1992).
Kurth et al., "Characterization of Human Renal Cell Carcinoma Tumor Lines by Means of Monoclonal Antibodies," Prostate, 6(4): 451 (Abstract) (1985).
Oosterwijk et al., "The Expression of Renal Antigens in Renal Cell Carcinoma," World Journal of Urology, 2(2): 156-158 (1984).
Oosterwijk et al., "Monoclonal Antibodies that Discriminate Between Renal Cell Carcinomas (RCC) and other Malignancies," Prostate, 6(4): 451-452 (1985).
Oosterwijk et al., "Immunohistochemical Analysis of Monoclonal Antibodies to Renal Antigens--Application in the Diagnosis of Renal Cell Carcinoma," American Journal of Pathology, 123(2): 301-309 (May 1986).
Oosterwijk et al., "Monoclonal Antibody G250 Recognizes a Determinant Present in Renal-Cell Carcinoma and Absent from Normal Kidney," Int. J. Cancer, 38: 489-494 (1986).
Oosterwijk et al., "Relationship Between DNA Ploidy, Antigen Expression and Survival in Renal Cell Carcinoma," Int. J. Cancer, 42: 703-708 (1988).
Oosterwijk et al., "Expression of Intermediate-sized Filaments in Developing and Adult Human Kidney and Renal Cell Carcinoma," The Journal of Histochemistry and Cytochemistry, 38(3): 385-392 (1990).
Oosterwijk et al., "Antibody Localization in Human Renal Cell Carcinoma: A Phase I Study of Monoclonal Antibody G250," Journal of Clinical Oncology, 11(4): 738-750 (Apr. 1993).
Oosterwijk et al., "The Use of Monoclonal Antibody G250 in the Therapy of Renal-Cell Carcinoma," Seminars in Oncology, 22(1): 34-41 (Feb. 1995).
Oosterwijk et al., "Molecular characterization of the Renal Cell Carcinoma-associated antigen G250," Proceedings of the American Association for Cancer Research, 37: 461 (Mar. 1996).
Uemura et al., "Internal Image Anti-Idiotype Antibodies Related to Renal-Cell Carcinoma-Associated Antigen G250," Int. J. Cancer, 56: 609-614 (1994).
Uemura et al., "Vaccination with Anti-Idiotype Antibodies Mimicking a Renal Cell Carcinoma-Associated Antigen Induces Tumor Immunity," Int. J. Cancer, 58: 555-561 (1994).
Uemura et al., "Immunization with Anti-Idiotype Monoclonal Antibodies Bearing the Internal Image of the Renal-Cell Carcinoma-Associated Antigen G25 Induces Specific Cellular Immune Responses," Int. J. Cancer, 59: 802-807 (1994).
Uemura et al., "Anti-tumor effects of vaccination with internal image anti-idotype monoclonal antibodies," Biotherapy (Japan), 9(3): 294-295 (1995).
Van Dijk et al., "Therapeutic Effects of Monoclonal Antibody G250, Interferons and Tumor Necrosis Factor, In Mice with Renal-Cell Carcinoma Xenografts," Int. J. Cancer, 56: 262-268 (1994).
Frohman et al., "Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer," PNAS (USA), 85: 8998-9002 (Dec. 1988).
Liao et al., "Identification of the Mn Antigen as a Diagnostic Biomarker of Cervical Intraepithelial Squamous and Glandular Neoplasia and Cervical Carcinomas," American Journal of Pathology, 145(3): 598-609 (Sep. 1994).
Pastorek et al., "Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment," Oncogene, 9: 2877-2888 (1994).
Opavsky et al., "Regulation of MN Expression," Cell Biology International, 18(5): Abstract No. Mo-58 (1994).
Frosch et al., "Cloning and Characterisation of an Immunodominant Major Surface Antigen of Echinococcus multilocularis", Molecular and Biochemical Parasitology, 48: 121-130 (1991).
Pastorekova et al., "A Novel Quasi-viral Agent, MaTU, Is a Two-Component System", Virology, 187: 620-626 (1992).
Stanbridge et al., "Specific Chromosome Loss Associated with the Expression of Tumorigenicity in Human Cell Hybrids", Somatic Cell Genetics, 7(6): 699-712 (1981).
Stanbridge et al., "Human Cell Hybrids: Analysis of Transformation and Tumorigenicity", Science, 215: 252-259 (Jan. 15, 1982).
Tweedie and Edwards, "Mouse Carbonic Anhydrase III: Nucleotide Sequence and Expression Studies", Biochemical Genetics, 27(1/2): 17-30 (1989).
Young and Davis, "Efficient Isolation of Genes by Using Antibody Probes", PNAS (USA) 80: 1194-1198 (Mar. 1983).
Zavada, "The Pseudotypic Paradox", J. gen. Virol., 63: 15-24 (1982).
Zavada and Zavadova, "A Transmissible Antigen Detected in Two Cell Lines Derived from Human Tumours", J. gen. Virol., 24: 327-337 (1974).
Zavada and Zavadova, "An unusual transmissible agent--MaTu", Arch. Virol., 118: 189-197 (1991).
Zavada et al., "VSV Pseudotype Produced in Cell Line derived from Human Mammary Carcinoma", Nature New Biology, 240: 124-125 (Nov. 22, 1972).
Zavada et al., "Tumorigenicity-Related Expression of MaTu Proteins in HeLa x Fibroblast Hybrids", Abstract presented at the XIX Meeting of the European Tumor Virus Group (May 1-4, 1991).
Zavada et al., "Expression of MaTu-MN Protein in Human Tumor Cultures and in Clinical Specimens", Int. J. Cancer, 54: 268-274 (1993).
Pastorek et al., "MN--A Novel Type of Oncoprotein," Cell Biology International, 18(5): Abstract No. Mo-57 (1994).
Pastorekova et al., "Transformation of Mammalian Cells by MN Oncogene," Cell Biology International, 18(5): Abstract No. Mo-56 (1994).
Reeck et al Cell vol. 50 667, Aug. 1987.
Lewin Science vol. 237 1570, 1987.
Pastorek et al, Oncogene vol. 9:2877-2888, 1994.
Costa et al, HUman Pa

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Immunological methods of detecting MN proteins and MN polypeptid does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Immunological methods of detecting MN proteins and MN polypeptid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Immunological methods of detecting MN proteins and MN polypeptid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1220308

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.