Forward body biased field effect transistor providing decoupling

Miscellaneous active electrical nonlinear devices – circuits – and – Specific identifiable device – circuit – or system – With specific source of supply or bias voltage

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

327537, G05F 110

Patent

active

06100751&

ABSTRACT:
In one embodiment of the invention, a semiconductor circuit includes a first group of field effect transistors that are forward body biased and have threshold voltages and a second group of field effect transistors that are not forward body biased and have threshold voltages that are higher than the threshold voltages of the first group of field transistors. In another embodiment of the invention, a semiconductor circuit includes first and second groups of field effect transistors. The circuit includes voltage source circuitry to provide voltage signals to bodies of the first group of field effect transistors to forward body bias the transistors of the first group. When the voltage signals are applied, the transistors of the first group have lower threshold voltages than do the transistors of the second group, except that there may be unintentional variations in threshold voltages due to parameter variations. Other aspects of the invention include forward biased decoupling transistors and a method of testing for leakage.

REFERENCES:
patent: 4377756 (1983-03-01), Yoshihara et al.
patent: 4565960 (1986-01-01), Takata et al.
patent: 4964082 (1990-10-01), Sato et al.
patent: 5461338 (1995-10-01), Hirayama et al.
patent: 5489870 (1996-02-01), Arakawa
patent: 5491432 (1996-02-01), Wong et al.
patent: 5557231 (1996-09-01), Yamaguchi et al.
patent: 5559368 (1996-09-01), Hu et al.
patent: 5594696 (1997-01-01), Komarek et al.
patent: 5656970 (1997-08-01), Campbell et al.
patent: 5661414 (1997-06-01), Shigehara et al.
patent: 5689144 (1997-11-01), Williams
patent: 5689209 (1997-11-01), Williams et al.
patent: 5814899 (1998-09-01), Okumura et al.
patent: 5821805 (1998-10-01), Jinbo
patent: 5838047 (1998-11-01), Yamauchi et al.
patent: 5841299 (1998-11-01), De et al.
patent: 5854561 (1998-12-01), Arimoto et al.
patent: 5900665 (1999-05-01), Tobita
patent: 5905402 (1999-05-01), Kim et al.
patent: 5929695 (1999-07-01), Chan et al.
patent: 5986476 (1999-11-01), De
Antoniadis, D.A. et al., "Physics and Technology of Ultra Short Channel MOSFET Devices," 1991 IEDM Technical Digest, pp. 21-24.
Aoki, M. et al., "0.1 .mu.m CMOS Devices Using Low-Impurity-Channel Transistors (LICT)," 1990 IEDM Technical Digest, pp. 939-941.
Assaderaghi, F. et al., "A Dynamic Threshold Voltage MOSFET (DTMOS) for Ultra-Low Voltage Operation", 1994 IEDM Technical Digest, pp. 809-812.
Assaderaghi, F. et al., "High-Performance Sub-Quarter-Micrometer PMOSFET's on SOI," IEEE Electron Device Letters, vol. 14, No. 6, Jun. 1993, pp. 298-300.
Benedetto, J., "Economy-Class Ion-Defying ICs in Orbit", IEEE Spectrum, Mar. 1998, pp. 36-41.
DeChiaro, L.F. et al., "Improvements in Electrostatic Discharge Performance of InGaAsP Semiconductor Lasers by Facet Passivation," IEEE Transactions on Electron Devices, vol. 39, No. 3, Mar. 1992, pp. 561-565.
Kawaguchi, H. et al., "FP 12.4: A CMOS Scheme for 0.5V Supply Voltage With Pico-Ampere Standby Current", 1998 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, Feb. 6, 1998, pp. 192-193.
Kioi, K. et al., "Forward Body-Bias MOS (FBMOS) Dual Rail Logic Using an Adiabatic Charging Technique With Sub -0.6V Operation", Electronics Letters, vol. 33, No. 14, Jul. 3, 1997, pp. 1200-1201.
Kioi, K. et al., "Forward Body-Bias SRAM Circuitry on Bulk Si With Twin Double-Well", Electronics Letters, vol. 33, No. 23, Nov. 6, 1997, pp. 1929-1931.
Kobayashi, T. et al., "Self-Adjusting Threshold-Voltage Scheme (SATS) for Low-Voltage High-Speed Operation", Proceedings of the IEEE 1994 Custom Integrated Circuits Conference, May 1-4, 1994, pp. 271-274.
Kotaki, K. et al., "Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS," International Electron Devices Meeting 1996, Dec. 8-11, 1996, pp. 459-462.
Kuroda, T. et al, "A 0.9-V, 150-MHz, 10-mW, 4mm.sup.2, 2-D Discrete Cosine Transform Core Processor with Variable Threshold-Voltage (VT) Scheme", IEEE Journal of Solid-State Circuits, vol. 31, No. 11, Nov. 1996, pp. 1770-1779.
Kuroda, T. et al, "FA 10.3: A 0.9V 150MHz 10mW 4mm.sup.2 2-D Discrete Cosine Transform Core Processor with Variable Threshold-Voltage Scheme," 1996 IEEE International Solid-State Circuits Conference, Feb. 1996, pp. 166-167.
Kuroda, T. et al., "A High-Speed Low-Power 0.3 .mu.m CMOS Gate Array With Variable Threshold Voltage (VT) Scheme", IEEE 1996 Custom Integrated Circuits Conference, May 5-8, 1996, pp. 53-56.
Kuroda, T. et al., "Substrate Noise Influence on Circuit Performance in Variable Threshold-Voltage Scheme," 1996 International Symposium on Low Power Electronics and Design Digest of Techinical Papers, Aug. 12-14, 1996, pp. 309-312.
Kuroda, T. et al., "Threshold-Voltage Control Schemes through Substrate-Bias for Low-Power High-Speed CMOS LSI Design," Journal of VLSI Signal Processing Systems 13, 191-201 (1996), pp. 107-117.
Kuroda, T. et al, "Variable Supply-Voltage Scheme for Low-Power High-Speed CMOS Digital Design", IEEE Journal of Solid-State Circuits, vol. 33, No. 3, Mar. 1998, pp. 454-462.
Krishnan, S. et al., "BiMOS Modeling for Reliable SOI Circuit Design," 1996 IEEE International SOI Conference Proceedings, Sep. 30-Oct. 3, 1996, pp. 140-141.
Mizuno, M. et al., "A Lean-Power Gigascale LSI Using Hierarchical V.sub.BB Routing Scheme with Frequency Adaptive V.sub.T CMOS", Symposium on VLSI Circuits Digest of Technical Papers, Jun. 1997, pp. 95-96.
Mizuno, H. et al., "SA 18.2: Elastic-Vt CMOS Circuits for Multiple On-Chip Power Control", 1996 IEEE International Solid-State Circuits Conference, Feb. 8-10, 1996, pp. 300-301.
Mutoh, S. et al., "1V High-Speed Digital Circuit Technology With 0.5 .mu.m Multi-Threshold CMOS", 1993 IEEE ASIC Conference Proceedings, pp. 186-189.
Mutoh, S. et al., "1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS," IEEE Journal of Solid-State Circuits, vol. 30, No. 8, Aug. 1995, pp. 847-854.
Oowaki, Y. et al, "A Sub-0.1 .mu.m Circuit Design With Substrate-Over-Biasing," 1998 IEEE International Solid-State Circuits Conference, Feb. 5, 1998, pp. 88-89 & 420.
Rodder, M. et al., "A Sub-0.18 .mu.m Gate Length CMOS Technology for High Performance (1.5V) and Low Power (1.0V)," 1996 IEDM Technical Digest, pp. 563-566.
Rofail, S.S. et al., "Experimentally-Based Analytical Model of Deep-Submicron LDD pMOSFET's in a Bi-MOS Hybrid-Mode Environment," IEEE Transactions on Electron Devices, vol. 44, No. 9, Sep. 1997, pp. 1473-1482.
Sakurai, T. et al., "Low-Power CMOS Design Through V.sub.TH Control and Low-Swing Circuits", Proceedings 1997 International Symposium on Low Power Electronics and Design, Aug. 18-20, 1997, pp. 1-6.
Seta, K. et al., "FP 19.4: 50% Active-Power Saving Without Speed Degradation Using Standby Power Reduction (SPR) Circuit", 1995 IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 1995, pp. 318-319.
Splain, C. et al., "Ultra Low Voltage Complementary Metal Oxide Semiconductor (ULV-CMOS) Circuits: Bulk CMOS Operation Below Threshold (V.sub.TO)," IEEE Southeastcon '96, Apr. 11-14, 1996, pp. 670-673.
Streetman, B., Solid State Electronic Devices, pp. 317-319 (Prentice-Hall, Inc., 2nd Edition, 1980).
Thompson, S. et al., "Dual Threshold Voltages and Substrate Bias: Keys to High Performance, Low Power, 0.1 .mu.m Logic Designs," 1997 Symposium on VLSI Technology Digest of Technical Papers, pp. 69-70.
Vasudev, P. et al., "Si-ULSI With a Scaled-Down Future: Trands and Challenges for ULSI Semiconductor Technology in the Coming Decade", IEEE Circuits & Devices, Mar. 1998, pp. 19-29.
Walker, W. et al., "Design and Analysis of a CMOS SOS/SOI Receiver for a Radiation Hard Computer," 1989 IEEE SOS/SOI Technology Conference, Oct. 3-5, 1989, pp. 167-168.
Wann, H. Clement et al., "Channel Doping Engineering of MOSFET with Adaptable Threshold Voltage Using Body Effect for Low Voltage and Low Power Applications," 1995 International Symposium on VLSI Technology, Systems and Applications, Proceedings of Technical Papers, May 31-Jun. 2, 1995, pp. 159-163.
Wan

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Forward body biased field effect transistor providing decoupling does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Forward body biased field effect transistor providing decoupling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Forward body biased field effect transistor providing decoupling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1153859

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.