Zone demand controlled dual air conditioning system and...

Refrigeration – Automatic control – Selective heating or cooling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S201000, C062S175000, C236S00100H, C165S217000

Reexamination Certificate

active

06792766

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to air conditioning systems for cooling and heating enclosures, such as are defined by domestic and commercial buildings. More particularly, the present invention provides a zone demand controlled dual source cooling and/or heating air conditioning system having an electronic controller system for mode selection and operation.
SUMMARY OF THE INVENTION
It is a principal feature of the present invention to provide a novel zone demand air conditioning system having a plurality of sources of beating and cooling, each being individually controlled for providing heating or cooling to meet the then current demand of a building structure and having a plurality of conditioned air supply ducts conducting conditioned air to individual zones of the building structure, with a thermostat for each zone and with an electronic controller circuitry for controlling zone blowers response to sensed zone temperature and for operation of the air conditioning system responsive to mode selection including, “cooling”, “heating”, “fan only” and “off”.
It is another feature of the present invention to provide a novel air conditioning system that may use various sources of cooling and heating equipment, such as heat pumps, chilled water, heated water, refrigerant compression and expansion systems, electric heating strips and combinations of the above and which are operable in cascade arrangement for operation according to thermal demand.
Briefly, the present invention, herein referred to as “Cascade Energy Saver” (CES), relates generally to air conditioning systems which are employed for both heating and cooling of rooms within domestic dwellings and commercial buildings. More specifically, the present invention concerns a zone demand controlled multiple blower fan coil system which either is transfering heat to an evaporative coil circulating refrigerant R-22 or R 410a or transferring heat to a water coil or coils, whether separate coils, one being for chilled water and the other being used in conjunction with hot water, thereby being connected to equipment, whether split system heat pumps or chillers, boilers and pumps, and its electronic control system which employs state of the art solid state electronics installed so as to control the operations between the equipment, the CES and the space temperature of the conditioned chamber. Even more specifically, the CES integration of these assorted components to effectuate a fan coil that when properly applied to the application, the conditioned chamber is maintained at desired set point temperatures and the plurality of the conditioned chambers utilizing the conditioning effects whether cooling or heating, are maintained contemporaneously with accuracy and efficiency.
BACKGROUND OF THE INVENTION
The inside spaces of building structures such as domestic dwellings and commercial buildings have in the past been cooled by a conventional air conditioning system having a heat exchanger installed externally to the building structure incorporating refrigerant heat exchange equipment whether air cooled or water cooled using coils, heat exchange blower and a compressor for achieving pressurized circulation of refrigerant such as freon R-22 or Puron R-410a with the effects of heat transfer being delivered to the conditioned chamber via the movement of refrigerant in the case of split system direct expansion system, or water lines circulating hot or cold water via pumps. Too, the typical air conditioning system also incorporates an air flow conduit system and a coil for heat exchange and a blower for circulating air through the conduit system to and from the inside space of the building structure. Typically the air conditioning system will also incorporate a condensed moisture collection and discharge system. For the purpose of heating, conventional building structures are provided with separate heat exchange systems which may employ electric resistance heaters, hot water coils or gas fired heating. Typically the blower of the heat dissipating exchanger of the air conditioning system will be large enough to also serve as the blower for circulating heat to and from the heat exchange apparatus in the case of heat pumps which extract heat from the ambient environment and through compression, transfer this heat to the conditioned chamber. The air conditioning system or the heating system may be manually selected or, as is typically the case, may be automatically selected by control circuitry having a thermostat for its sensing and control.
For a significant period of time alternative heating and cooling systems have been developed, typically referred to as heat pumps, which are typically electrically energized. A heat pump differs from conventional air conditioning systems only in the heat cycle. In the cool cycle the heat pump system incorporates an external condenser and internal evaporator each having heat exchange coils and blowers. In the cooling cycle the condenser unit circulates air across heat exchange coil through which refrigerant is circulated. The refrigerant gas absorbs the heat and the resulting cool air is circulated through an air supply and return conduit system that circulates the conditioned air to internal zones or spaces within the building structure. Simultaneously air that becomes heated by virtue of its presence within the zones of the building structure is circulated back through the coils for reheating the refrigerant which corresponds to a cooling effect to the air being circulated. The heat absorbed refrigerant is then circulated to the coils of the condenser located externally of the building structure and is liberated by the heat exchanger of the condenser into the external environment.
The heating cycle of the heat pump simply reverses the cycle. The heat is absorbed from the outside coils of the condenser and is exchanged via the coils of the internal evaporator so that heated air is circulated into the spaces of the building structure via the air circulation conduit system. Thus, the heat pump is a single air conditioning system that functions for both cooling and heating of the building structure, typically in response to thermostatic control. The process of exchanging heat by circulation of the refrigerant and having air to refrigerant heat exchange can also occur with refrigerant to water on both the evaporator and the condensor. If on the evaporator side, this process is referred to as reversed cycle chiller and if on the condenser side, it is referred to as water source heat pump and if from loops of piping in the ground it is referred to as ground source heat pumps.
It is typical for air conditioning systems to be designed and selected for peak load conditions and to employ a single air conditioning that is of sufficient capacity to accommodate the maximum peak load that will be experienced at any particular point in time. The block load as it is sometimes called is also the same as the building envelope load. Many times, the connected equipment, which is sized big enough to satisfy the sum of the individual zones, is larger than the peak building envelope load capacity requirement. The CES has by virtue of the multiple zones, the capability to be selected and sized for the peak building envelope load, though the number of zones served, may be summed up and represent a larger needed capacity. The CES will provide the required conditioning through the phenomenon called “swing”, as most tyically seen when a building has a large East exposure and West exposure. This circumstance is where the sum of the individual zones will exceed the peak building envelope load, but neither of the individual zones in and of itself will exceed the peak building envelope load. Therefore, by selecting the equipment capacity to be equal to or if by nominal sizes available larger than the peak building envelope load, the conditioned chamber will be satisfied. For this reason, air conditioning and heat pump systems will typically operate continuously under peak heat load conditions but at other t

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zone demand controlled dual air conditioning system and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zone demand controlled dual air conditioning system and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zone demand controlled dual air conditioning system and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3268724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.