Zinc finger peptide cleavage of nucleic acids

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Preparing compound containing saccharide radical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S252300, C435S320100, C435S199000, C536S023100, C530S324000

Reexamination Certificate

active

06365379

ABSTRACT:

FIELD OF THE INVENTION
This invention is directed to certain peptides which have been found to cleave nucleic acid under controllable conditions. In accordance with certain preferred embodiments, members of the family of peptides, known as zinc finger peptides, have displayed the ability to cleave single stranded RNA. Diagnostic, therapeutic and research regimes are now possible featuring the cleavage function of such peptides and complexes comprising them.
BACKGROUND OF THE INVENTION
Zinc finger peptides comprise a class of protein which are known per se. See: Page, D. C., Mosher, R., Simpson, E., Fisher, E. M. C., Mardon, G., Pollack, J., McGillirray, B., de la Chapelle, A., and Brown, L. G. (1987) Cell 51, 1091-1104; and Weiss, M. A., and Keutmann, H. T. (1990) Biochemistry 29, 9808-9813. The entirety of each of the references cited in this specification is incorporated herein by reference. Such peptides, which are of moderate length, are known to include zinc as a coordinate ion, and are known to complex certain nucleic acids. It has previously been know that certain zinc finger peptides complex with certain nucleic acids. However, it has now been found that at least certain of such peptides, under controllable conditions, can have functions far different than heretofore suspected. Such new functionalities have been found to give rise to the use of zinc finger peptides and related molecules in therapeutics, in diagnostics and in research.
SUMMARY OF THE INVENTION
It has now been found quite surprisingly that, under controllable conditions, zinc finger peptides can selectively cleave nucleic acids. This observation is startling in view of the fact that such peptides are known to actually complex with nucleic acids. In particular, it has been found that when the zinc concentration attendant to a zinc finger peptide decreases, the peptide tends to homodimerize, forming a structure which cleaves nucleic acid, especially single stranded RNA.
For example, a 30 amino acid peptide has been identified from among the family of zinc finger peptides, which efficiently cleaves single strand RNA. The peptide sequence corresponds to a single zinc finger of the human male associated ZFY protein; a transcription factor belonging to the Cys2His2 family of zinc finger proteins. See the Mosher, Kochoyan and Weiss references, supra. The peptide:
HOOC-KTYQCQYCEY RSADSSNLKTHIKTKHSKEK-NH2 (SEQ ID No. 1) has been shown to give rise to RNA cleavage, but such cleavage was observed only in the general absence of zinc. It has been found that coordination of the peptide with zinc resulted in complete loss of ribonuclease activity. The kinetics of RNA cleavage for the zinc-free form of the finger peptide were comparable to rates observed for the Group II intron ribozymes, e.g., V
0
, Kcat and Km of 6 nmol l-1 min-1, 0.96 s-1 and 105 nM, respectively). See Xiang, Q., Zhifeng Qin, P., Michels, W. J., Freeland, K., and Pyle, A. M. (1998) Biochemistry 37, 3839-3849.
The foregoing peptide appear to specifically cleave pyrimidines and preferentially cleave 5′-pyr-A-3′ within single stranded RNA. RNA sequences containing 5′-pyr-A-3′ were cleaved 10-30 fold faster than were those without such pyrimidine. The RNA cleavage products included a 3′-phosphate and 5′-hydroxyl. Single strand DNA, double strand RNA and DNA, and 2′-methoxy modified sequences were not hydrolyzed by this member of the class of zinc finger peptides, thus demonstrating selectivity. Divalent cations, (e.g., Mg2+ and Mn2+) were shown not to be required for catalysis. The pH for RNA cleavage with this peptide was pH 7.0. The bell shaped pH profile exhibited by the peptide is characteristic of general acid-base catalytic mechanisms observed with ribonucleases. Herries, D. G., Mathias, A. P., Rabin, B. R. (1962) Biochem. J. 85, 127; Del Rosario, E. J., Hammes, G. G. (1969) Biochemistry 8, 1884; Blackburn, P., and Moore, S. (1982) in The Enzymes (P. D. Boyer, ed.) 3rd ED. Vol. 15, pp435-468. Academic Press. N. Y.
Other zinc finger peptides, especially peptide mutants, are believed to exhibit the nucleic acid cleaving properties. Mutants to the peptide of Seq. I.D. No. 1 were synthesized in which Ala was substituted for His (H21,26A) and Glu (E9A). These mutants exhibited a 3-8 fold reduction in the cleavage rate but did not result in complete ablation in activity. This suggests a catalytic mechanism other than the one proposed for RNases A and T1. Blackburn, P., and Moore, S. (1982) in The Enzymes (P. D. Boyer, ed.) 3rd ED. Vol. 15, pp435-468. Academic Press. N.Y.; Takahashi, K and Moore, S. (1982) in
The Enzymes
(P. D. Boyer, ed.) 3rd ED. Vol. 15, pp435-468. Academic Press. N. Y.; and Roberts, G. C. K., Dennis, E. A., Meadows, D. H., Cohen, J. S., and Jardetzky, O. (1969) Proc. Natl. Acad. Sci. U.S.A. 62, 1151-1158.
Complete loss in ribonuclease activity was observed with Ala substitution of Lys residues (K19,20,23,25,28,30A) within the basic carboxyl terminal half of the peptide. These data suggest that positively charged basic region of the peptide may likely be binding electrostatically to the substrate. Polyacrylamide gel electrophoresis and mass spectral analysis indicated that the molecular weight of the peptide was consistent with peptide dimerization. The lack of dimer formation observed with the C5,8A peptide mutant suggest that peptide dimerization is via intermolecular disulfide bonds. Both monomer forms of the peptide, (e.g., C5,8A mutant and the reduced wild type peptide), exhibited no ribonuclease activity. Ribonuclease activity of the monomer form was regained with the substitution of Arg for Lys (K19,20,23,25,28,30R) suggesting that dimerization likely serves to enhance the binding of the peptide to the substrate but is not required for catalysis.
The ability of the zinc finger peptides to cleave nucleic acid, especially single stranded RNA, gives rise to their utility as therapeutics, diagnostics and research reagents. The destruction or disablement of RNA can be a useful event in interfering with disease states, as is well known to persons of skill in the art. Moreover, the ability to cleave single stranded RNA, especially selectively with respect to other nucleic acids and selectively with respect to situs of cleavage makes these molecules useful for research where such selective cleavage can readily be employed to advantage. Similarly, diagnosis of disease may be had through employment of zinc finger peptides to cleave RNA in a predictable fashion. These uses are particularly enhanced due to the fact that the activity is zinc dependent. Thus, by control, especially automated control, of zinc ion concentration, control of the cleavage reactions can be had. It will be appreciated that the zinc ion concentration is related to homodimer formation in the peptides. Thus, zinc ion formation and homodimer formation are related phenomena such that either or both can be used to monitor cleavage activity.
The zinc finger peptides useful in the practice of this invention are any of the family of such peptides together with mutants thereof which retain the ability to cleave nucleic acid under some controllable conditions such as zinc ion concentration. Mutants which improve specificity, reaction rate, or control functions are particularly preferred. While homodimer formation is a presently preferred interim assemblage preparatory to cleavage activity, such is not necessarily the case in some embodiments.
The ability of zinc finger peptides to selectively and controllably cleave nucleic acid, especially RNA make possible the preparation of zinc finger peptide complexes with particular activity. The covalent attachment of a zinc finger peptide to a targeting moiety, which can localize the peptide to a nucleic acid, such as an mRNA, whose cleavage or inactivation is desired, may be attained. Such attachment may be either directly, such that the peptide is directly bonded to such targeting moiety, or indirectly, whereby the peptide and targeting moiety are connected by a tether. In either

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zinc finger peptide cleavage of nucleic acids does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zinc finger peptide cleavage of nucleic acids, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zinc finger peptide cleavage of nucleic acids will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2832512

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.