Zinc citrate beads in oral compositions

Drug – bio-affecting and body treating compositions – Dentifrices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S489000, C424S490000, C424S496000, C424S641000, C424S642000, C424S643000

Reexamination Certificate

active

06592852

ABSTRACT:

SUMMARY OF THE INVENTION
An anti-tartar oral product is provided comprising:
(i) from about 0.001% to about 20% of beads which include a zinc salt and a gum held in a water matrix, the zinc salt and gum being present in a relative weight ratio from about 10,000:1 to about 10:1; and
(ii) a dental base.
DETAILED DESCRIPTION OF THE INVENTION
Now it has been found that the bitter taste of zinc salts can be improved by complexing the zinc salt with a gum to form active beads. On an equal zinc salt weight basis, the beads are at least as effective in anti-tartar activity as solubilized or dispersed non-complexed zinc salts of the known art.
Zinc salts usable for the present invention may include inorganic or organic counterions. Organic counterions include C
2
-C
20
compounds, especially carboxylates. Preferred organic counterions include citrates, malates, malonates, maleates, adipates, succinates, acetates, propionates, lactates, tartrates, glycolates and combinations thereof. Most especially preferred is zinc citrate trihydrate.
Inorganic zinc salts are less preferred than the organic ones. These include counterions such as halides (e.g. chloride, bromide and iodide), sulfates, nitrates, phosphates and combinations thereof.
Amount of the beads may range from about 0.01 to about 20%, preferably from about 0.5 to about 10%, optimally from about 1 to about 5% by weight of the total oral product.
A gum is a second essential component of the beads according to the present invention. Illustrative gums are polysaccharides including sodium carboxymethyl cellulose (CMC), hydroxyethylcellulose, methylcellulose, ethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, gum tragacanth, gum arabic, gum karaya, pectin, carageenan, guar, xanthan gum, starch and combinations thereof. Most preferred are the cellulose type gums, especially sodium carboxymethyl cellulose (CMC). All molecular weight types of sodium CMC may be useful, although the medium viscosity grade such as the 9M grade is most suitable.
Beads of the present invention are formed by the complexation of the zinc salt with the gum in the presence of water to form gel particles. Relative weight ratios of the zinc salt to gum in the beads may range from about 10,000:1 to about 10:1, preferably from about 1,000:1 to about 100:1 by weight.
Relative weight ratios of the zinc salt to water in the beads may range from about 50:1 to about 1:50, preferably from about 20:1 to about 1:1, optimally from about 10:1 to about 6:1 by weight.
Typically the amount of zinc salt in the beads may range from about 1 to about 99%, preferably from about 15 to about 98%, more preferably from about 50 to about 95%, optimally from about 75 to about 90% by weight of the beads. Amounts of the gum within the bead may range from about 0.001 to about 2%, preferably from about 0.1 to about 1%, optimally from about 0.25 to about 0.5% by weight of the beads. The remainder of the bead composition generally is water present in amounts from about 1 to about 60%, preferably from about 2 to about 40%, optimally from about 5 to about 20% by weight of the beads.
Average particle size of the beads may range from about 0.01 to about 50, preferably from about 0.1 to about 10, optimally from about 0.3 to about 5 micron. Bulk density of the beads may range from about 0.75 to about 0.95, preferably from about 0.8 to about 0.9, optimally from about 0.81 to about 0.84 gm/cc.
Beads according to the present invention are prepared prior to introduction into a dental base with other ingredients of the oral product. Zinc salt, gum and water can be formed by mixing in a Hobart type blending apparatus.
In one embodiment, the beads are visually distinct in the dental base. This may be accomplished by the beads being opaque and the base being transparent. Alternatively, the beads may appear as clear bodies colored differently from a transparent or opaque base.
Besides the beads, the oral product will contain a dental base in an amount of about 80 to about 99% by weight. Ingredients of the dental base may include humectants, thickeners, abrasives, anti-caries agents, surfactants, colorants, flavorants, opacifiers, water and a variety of special actives (e.g. desensitization agents such as potassium nitrate, peroxides and anti-bacterials such as triclosan).
Surfactants useful herein may be of the anionic, nonionic, cationic, zwitterionic or amphoteric type. Most preferred are sodium lauryl sulphate, sodium dodecylbenzene sulfonate and sodium lauryl sarcosinate. Amounts of the surfactant may range from about 0.5 to about 10%, preferably from about 1 to about 5% by weight of the dental base.
Humectants useful herein are usually polyols. Illustrative of this category are sorbitol, maltitol, mannitol, glycerin, propylene glycol, xylitol, hydrogenated corn syrup, polyethylene glycols and mixtures thereof. Amounts of the humectant may range from about 1 to about 60%, preferably from about 5 to about 50%, optimally from about 10 to about 40% by weight of the dental base.
Thickeners useful herein may be the same gums as utilized to complex with the zinc salts. However, these gums will be formulated into the dental base rather than into the pre-formed beads. Illustrative thickeners include sodium carboxymethyl cellulose, ethylcellulose, carageenan, xanthan gum, pectin, chemically modified starches and acrylates. The latter may be crosslinked polyacrylates such as Carbopol® 934. Inorganic thickeners are exemplified by silica aerogels and magnesium aluminum silicate, commercially available as Veegum®. Amounts of the thickener may range from about 0.01 to about 30%, preferably from about 0.1 to about 20%, optimally from about 0.5 to about 5% by weight of the dental base.
A fluoride anti-caries compound normally is usually present as part of the dental base. Illustrative of such fluoride compounds are sodium fluoride, potassium fluoride, calcium fluoride, stannous fluoride, stannous monofluorophosphate, sodium monofluorophosphate and copper fluoride. Most preferred is sodium fluoride. These sources should release anywhere from about 25 to about 5,000 ppm of fluoride ion. The anti-caries compound will normally be present in an amount from about 0.01 to about 5%, preferably from about 0.1 to about 2.5%, optimally from about 0.2 to about 1.5% by weight of the dental base.
Abrasives may also present in the dental base. Illustrative materials include sodium metaphosphate, dicalcium phosphate, calcium pyrophosphate, silica, alumina, chalk, insoluble bicarbonate salts and mixtures thereof. Amounts of the abrasive may range from about 1 to about 80%, preferably from about 5 to about 50% by weight of the dental base.
When the oral compositions are gels, structurants may be necessary. Particularly useful as a structurant are polyoxyethylene-polyoxypropylene copolymers such as those sold under the trademark Pluronic®. These materials are also known as Poloxamers and employed in amounts from about 5 to about 30%, preferably from about 18 to about 25% by weight of the dental base.
Flavors may also be part of the dental base. These flavors may be based on oils of spearmint and peppermint. Examples of other flavoring materials include menthol, clove, wintergreen, eucalyptus and aniseed. Flavors may range in amount from about 0.1 to about 5% by weight of the dental base.
Sweetening agents may also be included in the dental base. Illustrative agents include saccharin, sodium cyclamate, aspartame, acesulfame, xylitol and combinations thereof at levels from about 0.1 to about 10% by weight of the dental base.
Other additives may also be incorporated into the dental base. These may be anti-tartar agents, colorants, preservatives, silicones, other synthetic or natural polymers such as Gantrez S97®, and mixtures thereof. Amounts of these other ingredients may range from about 0.01 to about 20% by weight of the dental base.
Water may be present in the dental base in amounts from about 1 to about 95%, preferably from about 20 to about 60%, optimally from about 30 to about 50% by weight of the dental base.
Except

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zinc citrate beads in oral compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zinc citrate beads in oral compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zinc citrate beads in oral compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3001478

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.