Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Cell enclosure structure – e.g. – housing – casing – container,...
Reexamination Certificate
2001-04-10
2004-12-14
Ryan, Patrick (Department: 1745)
Chemistry: electrical current producing apparatus, product, and
Current producing cell, elements, subcombinations and...
Cell enclosure structure, e.g., housing, casing, container,...
C429S006000, C429S174000, C429S175000
Reexamination Certificate
active
06830847
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a zinc/air cell having an anode comprising zinc and an air cathode. The invention relates to adding a protective metal layer onto the peripheral edge and also optionally onto the outside surface of a multiclad anode casing for zinc/air cell.
BACKGROUND
Zinc/air cells are typically in the form of a miniature button cells which have particular utility as batteries for electronic hearing aids including programmable type hearing aids. Such miniature cells typically have a disk-like cylindrical shape of diameter between about 4 and 12 mm and a height between about 2 and 6 mm. Zinc air cells can also be produced in somewhat larger sizes having a cylindrical casing of size comparable to conventional AAAA, AAA, AA, C and D size Zn/MnO
2
alkaline cells as well as rectangular/prismatic cells.
The miniature zinc/air button cell typically comprises an anode casing (anode cup), and a cathode casing (cathode cup). The anode casing and cathode casing each typically have a cup shaped body with integral closed end and opposing open end. After the necessary materials are inserted into the anode and cathode casings, the open end of the anode casing is typically inserted into the open end of the cathode casing with electrical insulating material therebetween and the cell sealed by crimping. The anode casing can be filled with a mixture comprising particulate zinc. Typically, the zinc mixture contains mercury and a gelling agent and becomes gelled when electrolyte is added to the mixture. The electrolyte is usually an aqueous solution of potassium hydroxide, however, other aqueous alkaline electrolytes can be used. The cathode casing contains an air diffuser (air filter) which lines the inside surface of the cathode casing's closed end. The air diffuser can be selected from a variety of air permeable materials including paper and porous polymeric material. The air diffuser is placed adjacent air holes in the surface of the closed end of the cathode casing. Catalytic material typically comprising a mixture of manganese dioxide, carbon and hydrophobic binder can be inserted into the cathode casing over the air diffuser on the side of the air diffuser not contacting the air holes. An ion permeable separator is typically applied over the catalytic material so that it faces the open end of the cathode casing against the anode material in a crimped cell.
The cathode casing can typically be of nickel plated stainless steel, for example, with the nickel plate forming the cathode casing's outside surface and stainless steel forming the casing's inside surface. The anode casing can also be of nickel plated stainless steel, typically with the nickel plate forming the casing's outside surface. The anode casing can be of a triclad material composed of stainless steel having an outer layer of nickel and an inner layer of copper. In such embodiment the nickel layer typically forms the anode casing's outside surface and the copper layer forms the anode casing's inside surface. The copper inside layer is desirable in that it provides a highly conductive pathway between the zinc particles and the cell's negative terminal at the closed end of the anode casing. The triclad (or other multiple clad) anode casing can be formed by plating one metal onto the other or more preferably by heat/pressure forming (cladding) one metal onto the other preferably before the casing has been shaped. An insulator material typically in the form of a ring or disk of a durable, polymeric material can be inserted over the outside surface of the anode casing. The insulator ring is typically of high density polyethylene, polypropylene or nylon which resists flow (cold flow) when squeezed.
After the anode casing is filled with the zinc mixture and electrolyte and after the air diffuser, catalyst, and ion permeable separator is placed into the cathode casing, the open end of the anode casing can be inserted into the open end of the cathode casing. The peripheral edge of the cathode casing can then be crimped over the peripheral edge of the anode casing to form a tightly sealed cell. The insulator ring around the anode casing prevents electrical contact between the anode and cathode cups. A removable tab is placed over the air holes on the surface of the cathode casing. Before use, the tab is removed to expose the air holes allowing air to ingress and activate the cell. A portion of the closed end of the anode casing can function as the cell's negative terminal and a portion of the closed end of the cathode casing can function as the cell's positive terminal.
Typically, mercury is added in amount of at least one percent by weight, for example, about 3 percent by weight of the zinc in the anode mix. The mercury is added to the anode mix to improve inter-particle contact between zinc particles in the anode mixture. This in turn improves electrical conductivity within the anode and thus results in increased cell performance, for example, higher actual specific capacity of the zinc (Amp-hour/g). Also addition of mercury tends to reduce the hydrogen gassing which can occur in the zinc/air cell during discharge and when the cell is placed in storage before or after discharge. The gassing, if excessive, increases the chance of electrolyte leakage, which can damage or destroy the hearing aid or other electronic component being powered. It is desirable to reduce the amount of added mercury or eliminate adding mercury to the anode, since many regions around the world now restrict the use of mercury in electrochemical cells because of environmental concerns.
There can occasionally be creep of some electrolyte in the seal area provided between the anode and cathode casing thereby resulting in some electrolyte seepage from the cell. Such electrolyte seepage can occur regardless of whether mercury has been added to the anode. However, zinc/air cells that contain reduced amount of mercury, e.g. less than 3 percent by weight mercury based on the zinc or zero added mercury are generally more prone to gassing and such electrolyte creep. Seals have been provided wherein the insulating disk separating the anode and cathode casing has been coated on its inside surface (the insulator surface facing the anode casing) with an asphalt or polymeric sealant paste or liquid. However, this does not completely solve the problem of electrolyte creep between the anode and cathode casing in all circumstances. The electrolyte seepage can be promoted by surface imperfections on anode casing outer surfaces as well as the mating insulator surfaces. Misuse of the cell, that is, discharging the cell at higher current drain than intended can also promote excessive seepage.
The anode casing is typically formed of a triclad metal comprising a stainless steel body plated on the outside with a layer of nickel and on the inside with a layer of copper. The peripheral edge of the anode casing typically is clipped resulting in surface exposure of the three metals in very close proximity (within the thickness of the anode casing). It is believed that the exposure of the electrolyte to the different metals at the anode casing peripheral edge results in an electrochemical potential gradient causing surface reactions which in turn promotes electrolyte creep.
U.S. Pat. No. 3,897,265 discloses a representative zinc/air button cell construction with an anode casing inserted into the cathode casing. There is disclosed an insulator between the anode and cathode casings. The anode comprises zinc amalgamated with mercury. The cell includes an assembly comprising an air diffuser, cathode catalyst, and separator at the closed end of the cathode casing facing air holes in the surface of the cathode casing.
U.S. Pat. Nos. 5,279,905 and 5,306,580 disclose a miniature zinc/air cell wherein little or no mercury has been added to the anode mix. Instead, the inner layer of the anode casing has been coated with a layer of indium. The disclosed anode casing can be a triclad material composed of stainless steel plated o
Buckle Keith
Gibbons Daniel
Ramaswami Karthik
Douglas Paul I.
Josephs Barry D.
Krivulka Thomas G.
Mercado J.
Ryan Patrick
LandOfFree
Zinc/air cell does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Zinc/air cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zinc/air cell will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3295652