Zinc/air cell

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C429S218200

Reexamination Certificate

active

06300011

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a zinc/air cell having an anode comprising zinc and an air cathode. The invention relates to a molten metal binder added to the anode composition to bind zinc particles therein upon cooling.
BACKGROUND
Zinc/air cells are typically in the form of a miniature button cells which have particular utility as batteries for electronic hearing aids including programmable type hearing aids. Such miniature cells typically have a disk-like cylindrical shape of diameter between about 4 and 12 mm and a height between about 2 and 6 mm. Zinc air cells can also be produced in somewhat larger sizes having a cylindrical casing of size comparable to conventional AAAA, AAA, AA, C and D size Zn/MnO
2
alkaline cells and even larger sizes.
The miniature zinc/air button cell typically comprises an anode casing (anode cup), and a cathode casing (cathode cup). The anode casing and cathode casing each typically have a cup shaped body with integral closed end and opposing open end. After the necessary materials are inserted into the anode and cathode casings, the open end of the anode casing is typically inserted into the open end of the cathode casing and the cell sealed by crimping. The anode casing can be filled with a mixture comprising particulate zinc. Typically, the zinc mixture contains mercury and a gelling agent and becomes gelled when electrolyte is added to the mixture. The electrolyte is usually an aqueous solution of potassium hydroxide, however, other aqueous alkaline electrolytes can be used. The cathode casing contains an air diffuser (air filter) which lines the inside surface of the cathode casing's closed end. The air diffuser can be selected from a variety of air permeable materials including paper and porous polymeric material. The air diffuser is placed adjacent air holes in the surface of the closed end of the cathode casing. Catalytic material typically comprising a mixture of particulate manganese dioxide, carbon and hydrophobic binder can be inserted into the cathode casing over the air diffuser on the side of the air diffuser not contacting the air holes. An ion permeable separator is typically applied over the catalytic material so that it faces the open end of the cathode casing.
The cathode casing can typically be of nickel plated stainless steel, for example, with the nickel plate forming the cathode casing's outside surface and stainless steel forming the casing's inside surface. The anode casing can also be of nickel plated stainless steel, typically with the nickel plate forming the casing's outside surface. The anode casing can be of a triclad material composed of stainless steel having an outer layer of nickel and an inner layer of copper. In such embodiment the nickel layer typically forms the anode casing's outside surface and the copper layer forms the anode casing's inside surface. The copper inside layer is desirable in that it provides a highly conductive pathway between the zinc particles and the cell's negative terminal at the closed end of the anode casing. An insulator ring of a durable, polymeric material can be inserted over the outside surface of the anode casing. The insulator ring is typically of high density polyethylene, polypropylene or nylon which resists flow (cold flow) when squeezed.
After the anode casing is filled with the zinc mixture and after the air diffuser, catalyst, and ion permeable separator is placed into the cathode casing, the open end of the anode casing can be inserted into the open end of the cathode casing. The peripheral edge of the cathode casing can then be crimped over the peripheral edge of the anode casing to form a tightly sealed cell. The insulator ring around the anode casing prevents electrical contact between the anode and cathode cups. A removable tab is placed over the air holes on the surface of the cathode casing. Before use, the tab is removed to expose the air holes allowing air to ingress and activate the cell. A portion of the closed end of the anode casing can function as the cell's negative terminal and a portion of the closed end of the cathode casing can function as the cell's positive terminal.
Typically, mercury is added in amount of at least one percent by weight, for example, about 3 percent by weight of the zinc in the anode mix. The mercury is added to the anode mix to improve interparticle contact between zinc particles in the anode mixture. This in turn improves electrical conductivity within the anode and thus results in increased cell performance, for example, higher actual specific capacity of the zinc (Amp-hour/g). Also addition of mercury tends to reduce the hydrogen gassing which can occur in the zinc/air cell during discharge and when the cell is placed in storage before or after discharge. The gassing, if excessive, increases the chance of electrolyte leakage, which can damage or destroy the hearing aid or other electronic component being powered. Many regions around the world now greatly restrict the use of mercury in electrochemical cells because of environmental concerns. If other potential gassing inhibitors are added to the anode mix instead of mercury, they either significantly reduce the anode conductivity or have to be added in quantity, thereby significantly reducing the cell's capacity (mAmp-hrs).
U.S. Pat. No. 3,897,265 discloses a representative zinc/air button cell construction with an anode casing inserted into the cathode casing. There is disclosed an insulator between the anode and cathode casings. The anode comprises zinc amalgamated with mercury. The cell includes an assembly comprising an air diffuser, cathode catalyst, and separator at the closed end of the cathode casing facing air holes in the surface of the cathode casing.
U.S. Pat. No. 5,279,905 discloses a miniature zinc/air cell wherein little or no mercury has been added to the anode mix. Instead, the inner layer of the anode casing has been coated with a layer of indium. The disclosed anode casing can be a triclad material composed of stainless steel plated on the outside surface with nickel and on the inside surface with copper. The copper layer is at least 1 microinch (25.4×10
−6
mm). The reference discloses coating the copper layer on the anode casing's inside surface with a layer of indium. The indium layer is disclosed as being between about 1 microinch and 5 microinches (25.4×10
−6
mm and 127×10
−6
mm).
It is desired to improve the interparticle conductivity of the zinc in the anode of a zinc/air cell without adding mercury and without significantly increasing gassing.
It is desired to improve the actual specific capacity (m-Amp/g) of the zinc in the anode without adding mercury.
SUMMARY OF THE INVENTION
An aspect of the invention is directed to adding a metal binder to the electrochemically active metal in the anode of a metal/air depolarized cell, particularly the anode of a zinc/air cell. The invention is directed to adding a metal binder to particulate zinc comprising the anode of a zinc/air cell. The metal binder adheres to the surface of the zinc particles and binds the zinc particles. A principal aspect of the invention involves contacting the zinc particles with a metal binder in molten state and cooling the mixture whereupon the metal binder adheres to and binds zinc particles in the mixture.
The metal binder of the invention can be heated to above its melting point and added as a molten liquid to zinc powder. Alternatively, the metal binder can be added to zinc powder and the mixture heated for a period to a temperature above the melting point of the metal binder. In either case the metal binder of the invention is at a temperature above its melting point and thus in a molten state, for a period while in contact with particulate zinc. The mixture comprising particulate zinc and molten (liquified) metal binder is then cooled to about room temperature. As the mixture cools the metal binder solidifies and adheres to individual zinc particles and to at least so

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zinc/air cell does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zinc/air cell, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zinc/air cell will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2588863

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.