Zero stop adjustable rifle scope

Firearms – Implements – Sight devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C042S119000

Reexamination Certificate

active

06643970

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to telescopic scopes used with firearms and, more particularly, to scopes that can be “zeroed-in” for more accurate long range shooting.
2. Description of the Related Art
Riflescopes, telescopic scopes for rifles, are commonly used by hunters to aim their rifles at selected targets. During use, the hunter looks into the scope and positions the target within the field of view of the scope reticle. Because gravity causes the bullets to drop when they exit the rifle barrel, the angular position of the scope with respect to the rifle barrel must be compensated so that the impact point of the bullet matches the target seen on the scope reticle. The act of adjusting the angular position of the scope with respect to the rifle barrel is known as “zeroing-in”.
Typically, a scope is zeroed-in by the hunter when firing bullets at a target at a known distance. After viewing a group of impacts on the target, the hunter determines the distance of drop and then adjusts the angular position of the scope with respect to the rifle barrel. The hunter continues to use this “trial by error” method until the scope proper position, known as the “zero point”, is determined.
Many scopes include adjustment knobs that enable the hunter to easily “zero-in”
0
the scope and adjust the angular position of the scope for targets at distances greater than the distance used to “zero-in” the scope. For example, if the scope is “zeroed-in” at 200 yards, the adjustment knob may be used to adjust the angular position of the scope so that the reticle accurately views the more distant impact point (i.e. target). If the target moves towards or away from the user (i.e. 250 yards), the hunter must quickly readjust the adjustment knob so that the scope is positioned correctly.
In order to quickly readjust the angular position of the scope, the hunter must remember the adjustment knob current setting, the direction of rotation to increase or decrease the angle, and the number of “clicks”, or rotations of the knob, needed for the new setting. If the clicks are difficult to hear or feel or if the environment is dark, accurate adjustments can be difficult or impossible to make.
In order to prevent confusion, most scope manufacturers limit the movement of the adjustment knob to less than two rotations. Also, most scope manufacturers calibrate the adjustment knobs so that there are 60 to 120 clicks in one rotation and one click is equal to 1 inch to ½ inch adjustment in elevation of the target at 100 yards. Using this calibration standard, a typical scope maximum range of adjustment at 100 yards is 60 inches. When the above method is used to “zero-in” the scope, a substantial amount of rotation may have been used. Thus, the total number of clicks available for adjusting the position of the scope is reduced which seriously limits the usefulness of the rifle for shooting at long-range targets. Another drawback with using a relatively large calibration such as a “1 click equals 1 inch standard” is that it introduces a greater error at greater ranges. For example, if a target is located at 300 yards, an error of one click represents 3 inches in elevation.
What is needed is a scope elevation adjustment mechanism that enables the user to easily “zero-in” the scope at any position and still allow for full and unlimited rotation of the adjustment knob, and that also allows the adjustment knob to be used for finer adjustments.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a riflescope with an adjustment knob for changing the angular position of the rector tube.
It is another object of the present invention to provide such a riflescope that enables the user to set the “zero-in” point on the riflescope at any point of the riflescope range and still use the full range of adjustment of the adjustment knob.
It is a further object of the present invention to provide such a riflescope that uses “{fraction (
1
/
4
)} minute per click” fine adjustment setting for greater accuracy.
These and other objects are met by a zero stop riflescope adjustment mechanism that allows a user to establish the “zero point” at any point in the range of the scope, and still maintain ¼ minute clicks and unlimited rotations of the adjustment knob. The mechanism includes an adjustment bolt longitudinally aligned inside a cylindrical-shaped adjustment body that fits into a standard threaded hole formed on the turret of the riflescope. The adjustment bolt is a T-shaped structure with upper and lower threaded sections and a wide, central circular collar. During assembly, the lower threaded section of the adjustment bolt is connected to a lower threaded bore formed inside the adjustment body. The lower neck of the adjustment body connects to the threaded bore while the lower end extends into the hole formed on the turret and contacts the rector tube. When the adjustment bolt is rotated inside the adjustment body threaded bore, the distal end of the adjustment bolt advances or withdraws from the hole in the turret to change the angular position of the rector tube inside the riflescope.
When the adjustment bolt is properly connected to the adjustment body, the upper section of the adjustment bolt extends above the top surface of the adjustment body. Disposed longitudinally over the adjustment body is an index dial with a central bore formed therein that receives the threaded upper section of the adjustment bolt that extends above the adjustment body. The index dial includes a top surface with a central bore formed therein and a vertically aligned index line formed on its outside surface. During assembly, after the adjustment body is tightened and securely attached to the turret, the index dial is aligned over the adjustment body so that the threaded upper section extends through the index dial and the index line faces the shooter. An upward extending tab element is formed on the top surface of the index dial which acts as a stop surface for a downward extending tongue member on the bottom surface of the stop ring. After the adjustment body is tightened and securely attached to the turret, the index dial is aligned over the adjustment body and locked in position so that the index line faces the shooter.
Threadingly attached to the threaded upper section of the adjustment bolt that extends above the index dial is a stop ring. Attached to the outer perimeter of the stop ring is a downward extending tongue member that contacts the upward extending tab element formed on the index dial when the stop ring is rotated downward and positioned against the index dial. Together, the tab element and tongue member act as a stop means to prevent downward advancement of the stop ring over the adjustment bolt.
Threadingly attached to the threaded upper section on the adjustment bolt and above the stop ring is a lock ring. During use, the lock ring is rotated downwardly over the threaded upper section until it is pressed tightly against the top surface of the stop ring. Connecting means, such as screws, are then used to connect the lock ring and stop ring together which pinches them against the threads on the adjustment bolt thereby securely locking the lock ring and stop ring in a fixed position on the adjustment bolt. When the lock ring is rotated, the adjustment bolt is rotated inside the adjustment body until further downward rotation of the adjustment bolt is prevented by the index dial containing the stop ring.
A cylindrical-shaped outer cap is then longitudinally aligned and inserted over the threaded upper section of the adjustment bolt, the lock and stop rings, the index dial, and the adjustment body. A locking screw is then used to lock the outer cap to the lock ring.
Formed inside the upward extending cavity inside the adjustment body is a plurality of longitudinally aligned splines. As mentioned above, the adjustment bolt is initially attached to the threaded bore formed in the adjustment body. When properly connected thereto, the outer surface of the bolt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Zero stop adjustable rifle scope does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Zero stop adjustable rifle scope, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Zero stop adjustable rifle scope will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3123310

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.