Z-fold print media handling system

Typewriting machines – Sheet or web – Including programmed-control-system for record-medium feed

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C400S624000, C400S626000, C347S104000

Reexamination Certificate

active

06350073

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to printing mechanisms, and more particularly to a system for handling accordion-fold or Z-fold print media, such as for printing banners and the like, using an inkjet printing mechanism without needing a bulky and noisy tractor-feed mechanism.
BACKGROUND OF THE INVENTION
Inkjet printing mechanisms use cartridges, often called “pens,” which shoot drops of liquid colorant, referred to generally herein as “ink,” onto a page. Each pen has a printhead formed with very small nozzles through which the ink drops are fired. To print an image, the printhead is propelled back and forth across the page, shooting drops of ink in a desired pattern as it moves. The particular ink ejection mechanism within the printhead may take on a variety of different forms known to those skilled in the art, such as those using piezoelectric or thermal printhead technology. For instance, two earlier thermal ink ejection mechanisms are shown in U.S. Pat. Nos. 5,278,584 and 4,683,481, both assigned to the present assignee, Hewlett-Packard Company. In a thermal system, a barrier layer containing ink channels and vaporization chambers is located between a nozzle orifice plate and a substrate layer. This substrate layer typically contains linear arrays of heater elements, such as resistors, which are energized to heat ink within the vaporization chambers. Upon heating, an ink droplet is ejected from a nozzle associated with the energized resistor. By selectively energizing the resistors as the printhead moves across the page, the ink is expelled in a pattern on the print media to form a desired image (e.g., picture, chart or text).
To clean and protect the printhead, typically a “service station” mechanism is mounted within the printer chassis so the printhead can be moved over the station for maintenance. For storage, or during non-printing periods, the service stations usually include a capping system which hermetically seals the printhead nozzles from contaminants and drying. Some caps are also designed to facilitate priming, such as by being connected to a pumping unit that draws a vacuum on the printhead. During operation, clogs in the printhead are periodically cleared by firing a number of drops of ink through each of the nozzles in a process known as “spitting,” with the waste ink being collected in a “spittoon” reservoir portion of the service station. After spitting, uncapping, or occasionally during printing, most service stations have an elastomeric wiper that wipes the printhead surface to remove ink residue, as well as any paper dust or other debris that has collected on the printhead.
To print an image, the printhead is scanned back and forth across a printzone above the sheet, with the pen shooting drops of ink as it moves. By selectively energizing the resistors as the printhead moves across the sheet, the ink is expelled in a pattern on the print media to form a desired image (e.g., picture, chart or text). The nozzles are typically arranged in linear arrays usually located side-by-side on the printhead, parallel to one another, and perpendicular to the scanning direction, with the length of the nozzle arrays defining a print swath or band. That is, if all the nozzles of one array were continually fired as the printhead made one complete traverse through the printzone, a band or swath of ink would appear on the sheet. The width of this band is known as the “swath width” of the pen, the maximum pattern of ink which can be laid down in a single pass. The media is moved through the printzone, typically one swath width at a time, although some print schemes move the media incrementally by for instance, halves or quarters of a swath width for each printhead pass to obtain a shingled drop placement which enhances the appearance of the final image.
The picking and movement of print media through the printzone of an inkjet printing mechanism is the subject addressed herein. The print media, may be any type of substantially flat material, such as plain paper, specialty paper, card-stock, fabric, transparencies, foils, mylar, etc., but the most common type of medium is paper. For convenience, we will discuss printing on paper as a representative example of these various types of print media. The media may be supplied to the printing mechanism in a variety of different configurations. For instance, in desktop inkjet printers, paper is typically supplied in a stack of cut-sheets, such as letter size, legal size, or A-4 size paper, which are placed in an input tray. Typically, sheets are sequentially pulled from the top of the stack and printed on, after which they are deposited in an output tray. Other types of inkjet printing mechanisms feed the paper from a continuous roll, such as an inkjet plotter. Upon completion of plotting an image or drawing on a portion of the continuous roll, the plotter has a severing mechanism to cut the newly printed sheet from the remainder of the roll.
It would be desirable to have an inkjet printing mechanism which can print on both Z-fold media and conventional cut-sheets of media A Z-fold or accordion folded stack of media has each sequential sheet joined to the adjacent sheet along a fold, with the sheets being bent back onto one another into a Z-shape when viewed from the side. Along each side, conventional Z-fold paper has border extensions with a series of evenly-spaced holes therethrough which are engaged by sprockets of a tractor-feed mechanism on the printer to advance the media through the printzone. Typically Z-fold paper came supplied in a letter sized stack, with perforations along the folds at the top and bottom of each sheet to assist in separating the sheets upon completion of the print job. The border extensions with the tractor feed holes are also joined to the side edges of the media at perforations, which enables separation of the borders from the sheet upon completion of the print job. Unfortunately, the tractor-feed mechanisms were very expensive to build, and often noisy in operation. Furthermore, most of these tractor-fed printers were bulky, increasing the overall size or “footprint” of the printer, so excessive desk top space in the work environment was occupied by these earlier printers.
Yet it would be desirable to use Z-fold paper in a conventional cut-sheet inkjet printing mechanism without a costly tractor-feed. Z-fold media is particularly useful for printing banners, extended graphs, continuous scrolls or outlines of text, and a variety of other images, such as artwork and the like. The versatility of an inkjet printing mechanism would be greatly enhanced if it could feed not only cut-sheets of paper but also Z-fold media. Unfortunately, conventional inkjet printing mechanisms are unable to feed a Z-fold stack of paper from a cut-sheet input tray. By tearing the border extensions off of a Z-fold paper stack, the Z-fold paper will fit in the input tray, but conventional inkjet printing mechanisms are unable to pick the Z-fold media from the tray. Because the Z-fold sheets are physically attached to one another, often the conventional printer tries to pick the entire stack all at once, leading to a significant paper jam. This problem is often encountered in cut-sheet media feeding, and is known in the art as a “multiple pick,” where several sheets are picked from the input tray all at once.
For cut-sheet media, this multiple pick problem is often remedied by using a friction separator pad at the edge of the input tray, where media begins to enter the feed zone. The media drive rollers feed the sheet through the feed zone. If the second sheet from the top of the stack moves with the first sheet, the second sheet is driven over a friction separator pad. The coefficient of friction of the friction separator pad to the media is higher than the coefficient of friction between the two media sheets. Thus, the second sheet stops on the separator pad and does not continue to be fed through the mechanism. This prevents a multiple pick. Unfortunately, this conventional manner of preventing

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Z-fold print media handling system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Z-fold print media handling system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Z-fold print media handling system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2955489

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.