Yield monitor for forage crops in forage machinery including...

Crop threshing or separating – Means responsive to a sensed condition – Machine load

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C056S01020R

Reexamination Certificate

active

06616527

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a yield monitor, and more particularly to a yield monitor for use with forage processing machinery.
2. Description of the Background Art
Modern farming has continued to evolve and change as farmers strive to increase efficiency of farming methods and to operate in a way that maximizes yields while conserving soil and minimizing use of pesticides, fertilizers, etc. One area of great interest is precision farming, where instead of treating a field as one uniform unit of land, a farmer maps, analyzes, fertilizes, harvests, and otherwise treats small sections of a field. Using precision farming techniques, a farmer can more precisely control the application of fertilizers, pesticides, etc., and can more precisely monitor resulting yields. This allows field treatment on more of an as-needed basis and makes better use of resources.
In order to do this, a farmer needs to be able to measure and record yield levels at different spots in the field as the crop is being harvested or otherwise processed. This data may be used to generate a yield map showing yield levels for each region of a field.
In the prior art, precision farming for grain production has included devices such as yield monitors. Typically, yield monitors are included on a combine or other grain harvester and can gather yield data as the grain is harvested. For example, in a wheat combine, the grain is weighed or otherwise quantified as it is harvested (i.e., weighed in the harvesting machine). As previously discussed, this presents advantages to the farmer in being able to know how each small region of the field is producing. Problem regions can be targeted, insect infestations can be outlined, different soil types can be identified and plotted, diseases can be identified, fertilizer quantities can be adjusted, etc.
Typically, when storing yield data to a yield map, multiple measurements may be taken and averaged for each cell (a field may be divided up into cells, with a cell being the smallest unit measured or displayed). Typically, a cell is equal in width to a harvester or processing machinery operating width, such as, for example, a cut width or pickup width. By measuring an instantaneous yield amount, a machine can measure and record a yield amount for each cell of a field. The data may be manipulated or transmitted to other computers for analysis and storage.
One area that has not seen wide application of precision farming methods and machinery is in the area of forage. Forage is defined as cultivated non-grain plants or plant parts, other than separated grain, grown for grazing or for harvest as animal feed. The term forage generally refers to more-digestible material (e.g., what is called pasturage, hay, silage, dehydrated, green chop) in contrast to less-digestible plant material, known as roughage. Examples of forage crops are grasses, hay, alfalfa, corn silage, etc. Forage is widely used for animal feed especially, for example, during winter time when pasture grasses are generally not available. In addition, forage can be harvested and stored during abundant times as a hedge against leaner times.
Forage processing machinery encompasses many different types of machinery used for different purposes. Examples of forage processing machinery are mowers, windrowers, mower conditioners, balers, etc. A mower includes a cutter bar and cuts the forage, with the forage lying where it falls. A windrower is essentially a mower that gathers the cut forage into a windrow. The forage harvester
110
is a machine that cuts or picks up forage, chops it into small pieces, and deposits the chopped forage (sometimes referred to as silage) into a trailing wagon. The chopped forage is generally fed into a blower that blows the chopped forage up a spout and into the wagon. A baler picks up cut forage and compresses it into a rectangular or round bale that is bound up with wire, twine, or a net wrap.
The availability of grain yield monitors, as opposed to yield monitors for forage crops, is due to the fact that the harvesting of grain is quite different from the harvesting of forage. For example, grain is typically small, fairly uniform in terms of size, density, moisture content, etc., where forage may include a wide variety of plant sizes, plant moisture content, leaf types, stem lengths, toughness, etc. Therefore, although much progress has been made in yield monitored devices for grain harvesting, forage harvesting has not seen such improvements. Based upon current techniques, the farmer can obtain yield values only on a per field basis.
What is needed, therefore, are yield monitors for forage processing machinery.
SUMMARY OF THE INVENTION
A yield monitor for a forage processing machinery is provided in accordance with one aspect of the invention. The yield monitor comprises a cross auger supported by at least one force measuring device. The at least one force measuring device generates a force signal substantially related to a forage mass flow rate. The yield monitor also includes a computer that receives the force signal and generates a yield amount using the force signal, a forage processing machinery groundspeed, and forage processing machinery intake parameters. A method for measuring a forage yield is also provided comprising the steps of generating a force signal due to a forage stream impinging on the cross auger and at least one force measuring device. The method generates a yield amount based upon the force signal, a forage processing machinery groundspeed, and forage processing machinery intake parameters.
A yield monitor for a forage processing machinery is provided in accordance with another aspect of the invention. The yield monitor comprises a spinner communicating with at least one force measuring device. The at least one force measuring device generates a force signal in response to a force on the spinner due to impingement by a forage stream, the force signal being substantially related to a forage mass flow rate. The yield monitor also includes a computer that receives the force signal and generates a yield amount using the force signal, a forage processing machinery groundspeed, and forage processing machinery intake parameters. A method for measuring a forage yield is also provided comprising the steps of generating a force signal due to a forage stream impinging on the spinner and at least one force measuring device in communication with the spinner. The method generates a yield amount based upon the force signal, a forage processing machinery groundspeed, and forage processing machinery intake parameters.
A yield monitor for a forage processing machinery is provided in accordance with yet another aspect of the invention. The yield monitor comprises a deflector shield affixed to at least one force measuring device. The deflector shield is positioned below a cutter head of a forage harvester to guide a forage stream leaving the cutter head. A forage stream impinges on the deflector shield and the at least one force measuring device. The at least one force measuring device generates a force signal substantially related to a forage mass flow rate. The yield monitor also includes a computer that receives the force signal and generates a yield amount using the force signal, a forage processing machinery groundspeed, and forage processing machinery intake parameters. A method for measuring a forage yield is also provided comprising the steps of generating a force signal due to a forage stream impinging on the deflector shield and the associated at least one force measuring device positioned below a cutter head of a forage harvester. The method generates a yield amount based upon the force signal, a forage processing machinery groundspeed, and forage processing machinery intake parameters.
A yield monitor for a forage processing machinery is provided in accordance with yet another aspect of the invention. The yield monitor comprises a transition stage within the forage processing machinery. The transition stage has a w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Yield monitor for forage crops in forage machinery including... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Yield monitor for forage crops in forage machinery including..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Yield monitor for forage crops in forage machinery including... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3095172

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.