Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Scleroproteins – e.g. – fibroin – elastin – silk – etc.
Reexamination Certificate
2006-05-23
2006-05-23
Weber, Jon (Department: 1653)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
Scleroproteins, e.g., fibroin, elastin, silk, etc.
C530S402000
Reexamination Certificate
active
07049405
ABSTRACT:
The invention relates to a method of producing useful materials from filament-forming α-helical proteins or filaments made of such proteins. The method comprises allowing filament-forming α-helical proteins to self-assemble into α-helix containing filaments and forming fibres, films or bulk materials from the filaments. The materials are stretched to strain the filaments so that the α-helices substantially irreversibly change to β-sheet forms. The filament-forming α-helical proteins can comprise intermediate filament proteins. In a specific embodiment, the filament-forming proteins comprise hagfish slime thread IF proteins.
REFERENCES:
patent: 5773577 (1998-06-01), Cappello
patent: 6033654 (2000-03-01), Stedronsky et al.
patent: WO 94/29450 (1994-12-01), None
Fudge et al. Mechanical and Optical Properties of Hagfish Slime Threads. American Zoologist. Dec. 2000 40, 6, p. 1021.
Hearle. A Critical Review of the Structural Mechanics of Wool and Hair Fibres. International Journal of Biological Macromolecules. 2000. 27, 123-138.
Abumuhor, I. A., Spencer, P. H. and Cohlberg, J.A. (1998). The pathway of assembly of intermediate filaments from recombinant* Jour. of Structural Biology 123, 187-198.
Candelas, G.C., A. Ortiz and N. Ortiz (1988). Features of cell-free translation of a spider fibroin mRNA. Cell Biol. 67:173-176.
Cerda, J., Conrad, M., Markl, J., Brand, M. and Herrmann, H. (1998). Zebrafish vimentin: molecular characterization, assembly properties* Eur Jour.of Cell Biology 77, 175-187.
Cusack, S., Belrhali, H., Bram, A., Burghammer, M., Perrakis, A. and Riekel, C. (1998). Small is beautiful: protein micro-crystallography. Nature Structural Biology 5, 634-637.
Denny, M. (1976). The physical properties of spiders silk and their role in the design of orb webs. Journal of Experimental Biology 65, 483-506.
Downing, S. W., Spitzer, R.H., Salo, W.L., Downing, S.D., Saidel, L.J., Koch, E.A. (1981). Hagfish slime gland thread cells: organization, biochemical* Science 212, 326-328.
Fahnestock SR, Yao Z, Bedzyk LA (2000). Microbial production of spider silk proteins (2000) Reviews in Mol. Biotech. 74(2):105-19.
Fernholm, B. (1981). Thread cells from the slime glands of hagfish (Myxinidae). Acta Zoologica 62, 137-145.
Fradette, J., Germain, L., Seshalah, P. and Coulombe, P. A. (1998). The type I keratin 19 possesses distinct and context-dependent* Jml of Biological Chem 273, 35176-35184.
Fraser, R.D.B, MacRae, T.P., Parry, D.A.D. Suzuki, E. (1969). Structure of b-keratin. Polymer. 10, 810-26.
Frederick SE, Mangan ME, Carey JB, Gruber PJ. Intermediate filament antigents of 60 and 65 kDa in the nuclear matrix of plants: their det* (1992) Exp Cell Res. 199(2):213-22.
Fuchs, E. and Cleveland, D. W. (1998). A structural scaffolding of intermediate filaments in health and disease. Science 279, 514-9.
Guerette, P. A., Ginzinger, D. G., Weber, B. H. F. and Gosline, J.M. (1996). Silk properties determined by gland-specific expression of a spider fibroin* Sci. 272, 112-115.
Hargreaves AJ, Goodbody KC, Lloyd CW. Reconstitution of intermediate filaments from a higher plant (1989). Biochem J. 261(2):679-82.
Hearle, J. W. (2000). A critical review of the structural mechanics of wool and hair fibers. International Journal of Biological Macromolecules 27, 123-38.
Herrmann, H. et al. (2000). Critical evaluation of the distinct steps of intermediate* Mol. Biol. of the Cell 11, (supplement, Dec) Abstract #2762, p. 534a).
Herrmann, H. et al. (2000). The intermediate filament protein consensus motif of helix 2B: Atomic structure* J. Mol. Biol. 298:817-832.
Hofmann, I., Herrmann, H. and Franke, W. W. (1991). Assembly and structure of calcium-induced thick vimentin filaments. European Journal of Cell Biology 56, 328-41.
Jannatipour, M. and Rokeach, L.A. (1998). A Schizosaccharomyces pombe gene encoding a novel polypeptide with a predicted alpha-helical* Biochim Biophys Acta, 30;1399(1):67.
Knight, D. P., Knight, M. M. and Vollrath, F. (2000). Beta transition and stress-induced phase separation in the spinning of spider* Int. J. Biol. Macro. 27, 205-10.
Koch, E. A., Spitzer, R. H., Pithawalla, R. B. and Parry, D. A. (1994). An unusual intermediate filament subunit from the cytoskeletal* Journal of Cell Science 107, 3133-44.
Koch, E.A., Spitzer, R. H., Pithawalla, R.B., Castillos, F. A., 3rd and Parry, D. A. (1995). Hagfish biopolymer: a type I/type II* Int. Journ.of Biol. Macro. 17, 283-92.
Lazaris, A., et al., (2002). Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472-476.
Ma et al., A ‘hot-spot’ mutation alters the mechanical properties of keratin filament networks, Nat. Cell Biol. 3(5):503-506 (2001).
Mack, J.W. et al., The mechanism of interaction of filaggrin with intermediate filaments: The ionic zipper hypothesis J. Mol. Biol. 232: 50-66 (1993).
Matoltsty, A.G. (1965) In “Biology of Skin and Hair Growth” (A.G. Lyne and B. F. Short, ed.), Angus and Robertson, Sydney.
Masuda K, et al., (1997). Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical* Exp Cell Res. 10;232(1):173-81.
Pandey, A (2001). Plants to make silk. Trends Genet. 2001 17(8):442.
Parry, D. A. and Steinert, P. M. (1999). Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism. Quarterly Reviews of Biophysics 32, 99-187.
Porter, R. M., et al. (1998). cDNA cloning, expression, and assembly characteristics of mouse* Jour. of Biol. Chem. 273, 32265-32272.
Puchtler, H., Waldrop, F, S. and Meloan, S. N. (1985), A review of light, polarization and fluorescence microscopic methods for amytoid. Appl. Pathol. 3, 5-17.
Riekel, C., Madsen, B., Knight, D. and Vollrath, F. (2000). X-ray diffraction on spider silk during controlled extrusion under a synchroton* Biomacromol. 1, 622-26.
Scheller J, Guhrs KH, Grosse F, Conrad U. Production of spider silk proteins in tobacco and potatos (2001). Nat Biotechnol. 19(6):573-7.
Spitzer, R. H., et al. (1984). Hagfish slime gland thread cells. II. Isolation and characterization of intermediated filament components* Journal of Cell Biology 98, 670-7.
Spitzer, R. H., Koch, E. A. and Downing, S. W. (1988). Maturation of hagfish gland thread cells: composition and characterization* Cell Motility & the Cytoskeleton 11, 31-45.
Steinbock FA, et al., Dose-dependent linkage, assembly inhibition and disassembly of vimentin and cytokeratin 5/14 filaments through* J. Cell Sci. 113(3):483-491 (2000).
Vollrath, F. and Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature 410, 541-548.
Wang, J. et al., (2000). The epidermal intermediate filament proteins of tunicates are distant keratins; a polymerisation-competent* Eur. Journal of Cell Biology 79, 478-487.
Wang, N. and Stamenovic, D. (2000). Contribution of intermediate filaments to cell stiffness, stiffening, and growth. American J. of Physiology—Cell Physiol 279, C188-94.
Work, R. W. (1982). A physico-chemical study of the supercontraction of spider major ampullate fibers. Textile Research Journal 59, 349-356.
Wu, K. C. et al., (2000). Coiled-coil trigger motifs in the 1B and 2B rod domain segments are required for the stability of keratin* Mol. Biol. of the Cell 11, 3539-3558.
Yoon, M. et al. (2000). The motile properties and assembly states of intermediate filament (IF)* Mol. Biol. of the Cell 11 (supplement, Dec.) Abstract #2765, p. 534a.
Gatesy, John et al., Extreme Diversity, Conservation, and Convergence of Spider Silk Fibroin Sequences, Science vol. 291:2603-2605 (2001).
Hayashi, Cheryl Y. et al., Evidence from Flagelliform Silk cDNA for the Structural Basis of Elasticity and Modular Nature of Spider Silks, J. Mol. Biol. 275:773-784 (1998).
Herrmann, H., Aebi, U., Intermediate filament assembly: temperature sensitivity and polymorphism, Cell Mol. Life Sci. 55:1416-1431 (1999).
O'Brien, J.P. et al., (1994) Design, synthesis and fabrication of a novel self-assembling fibrillar protein, In: Silk Polymers. Amer. Chem. Soc. pp. 104-117.
Storm, Corne
Fudge Douglas
Gosline John
Guerette Paul
Mayer Suzanne M.
Oyen Wiggs Green & Mutala LLP
The University of British Columbia
Weber Jon
LandOfFree
α-helical protein based materials and methods for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with α-helical protein based materials and methods for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and α-helical protein based materials and methods for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3545658