X-ray or gamma ray systems or devices – Beam control – Filter
Reexamination Certificate
2000-12-20
2003-05-13
Dunn, Drew A. (Department: 2882)
X-ray or gamma ray systems or devices
Beam control
Filter
C378S145000
Reexamination Certificate
active
06563909
ABSTRACT:
The invention relates to an X-ray examination apparatus which includes an X-ray source, an X-ray detector, an absorption means arranged between the X-ray source and the X-ray detector, a control unit for adjusting the degree of absorption of the absorption means, an image processing unit and a display unit.
Absorption means are used to limit the X-ray beam path in X-ray examination apparatus. To this end, the means is arranged between the X-ray source and the X-ray detector. On the one hand, limiting the X-ray beam path limits the region of the patient to be irradiated to a necessary optimum. On the other hand, such limiting limits the X-ray image to be diagnosed by the physician to the region with the organ to be examined, without imaging additional regions that do not provide useful information but could affect the quality of the X-ray image.
U.S. Pat. No. 5,287,396 discloses an X-ray apparatus with absorption means. The X-ray examination apparatus therein includes an image processing unit with a memory in which the absorption values of an X-ray image are stored in the form of a matrix. The X-ray image is segmented into sub-regions by means of detection means. The image is subdivided into a foreground and a background on the basis of a threshold value for the absorption value. The position of the absorption means is calculated by means of an arithmetic unit and the subdivision. The absorption means are then shifted to the calculated position by means of a drive unit. The absorption means are automatically positioned in such a manner that the surface area of the covered background is maximum while the surface area of the covered foreground is minimum.
The described automatic positioning of the absorption means has the drawback that the image is subdivided or segmented into two binary classes. The absorption means are positioned on the basis of this subdivision. This type of segmentation constitutes an unnecessary limitation for the calculation of the position of the absorption means, because not only the local image brightness is decisive for the positioning of the absorption means. Absorption means often exhibit a weak attenuation at their edges, so that the X-ray image is attenuated less when diagnostically relevant regions are covered. This fact is not taken into account in U.S. Pat. No. 5,287,396.
In the case of manual adjustment of the absorption means by a physician, further information is used for adjustment. In the end the physician finds a compromise between all parameters taken into account.
In contemporary systems positioning is performed either directly manually, mechanically or by motor-driven positioning to a position selected manually on the basis of an image impression. This manual adjustment requires an examination time, is disturbing to the physician and distracts the attention from the actual examination and the care of the patient.
Therefore, it is an object of the invention to provide an X-ray examination apparatus in which the absorption degree of the absorption means is automatically optimally adjusted.
This object is achieved in that the absorption degree is optimized in dependence on user-specific parameters, apparatus-specific parameters, structure parameters or parameters classifying the subject matter of the image.
The X-rays emitted by the X-ray source pass the absorption means and irradiate the patient. The X-ray image produced by the X-rays is imaged on an X-ray detector. After conversion into an electric image signal, the X-ray image is transferred to an image processing unit in which it is stored; it is displayed on a monitor at the same time.
For medical X-ray examinations the absorption means are positioned during an X-ray exposure in such a manner that the radiation is attenuated or stopped in image regions in which the detector was struck by direct X-rays that have not been attenuated by the patient, thus avoiding disturbing over-exposures, that the X-rays are attenuated in diagnostically irrelevant regions so as to avoid an unnecessary patient dose as well as scattered radiation, and that the X-rays are not stopped in diagnostically relevant regions, for example, regions containing anatomical structures, thus enabling optimum diagnostic use. These steps lead to an optimized image quality and patient dose.
The following parameters can be classified for the adjustment of the absorption means. The basis for optimum adjustment is formed by the opinion of the physician performing the diagnosis as to how the X-ray image should be. This opinion is gathered in the user-specific parameters. The apparatus-specific parameters contain information such as the type of X-ray examination apparatus, tube voltage, tube current and exposure time. Structure parameters are values determined from the X-ray image. Structure parameters contain information as regards the grey scale value distribution in a group of pixels. Structure parameters also contain information concerning the image contrast. To this end, a histogram is formed of the grey scale values of the entire image; the appearance of the relevant grey scale values is taken up in said histogram. The distribution then obtained can be used as a measure of the contrast. The parameters classifying the subject matter of the image contain information concerning the organ or the body region to be irradiated by means of X-rays. The user-specific parameters and the parameters classifying the subject matter of the image are combined so as to form a knowledge base.
The image processing unit is provided with arithmetic means whereto said parameters are applied and which calculate an optimum adjustment of the absorption means on the basis of said parameters. The parameters are stored in memories or are extracted from the acquired X-ray image. The parameters are combined in a quality function which is optimized in a manner to be specified. The adjustment thus calculated is applied to the control unit via which the absorption means are moved to the calculated position or via which the absorption means adopt the calculated adjustment.
The absorption means in an embodiment of the X-ray examination apparatus according to the invention are essentially not transparent to X-rays. The absorption means can advantageously induce an absorption which is not one hundred percent, so that a smooth transition occurs between the exposed region and the covered region in the X-ray image. To this end, for example, the absorption means are shaped as a wedge so that absorption at the tip of the wedge is not total. This variation of the attenuation is also taken up in the knowledge base.
The absorption means can be arranged in a diaphragm device in such a manner that they are moved to the calculated position by means of sliding devices which are electrically or hydraulically driven. The described wedges or diaphragm plates are then used. The absorption means are arranged in such a manner that they are capable of limiting the conical X-ray beam path from all sides or that they limit the X-ray beam path in one location only by partial insertion of a single diaphragm plate.
A further embodiment of the X-ray examination apparatus according to the invention utilizes a filter consisting of a plurality of filter elements that can be filled as the absorption means. Therein, the degree of filling of a liquid attenuating X-rays can be electrically adjusted. An X-ray attenuation which varies across the beam cross-section can thus be realized.
It has been found that it is advantageous to superpose a calculated adjustment of the absorption means on the rendition of the X-ray image on the monitor before performing the ultimate adjustment by means of the control unit. The attending physician can thus evaluate and possibly correct the calculated adjustment.
It has also been found that the variations of the parameters are advantageously stored so as to collect empirical values and to adapt the parameters of the knowledge base on the basis of these empirical values. The degree of adaptation can then be adjusted. This results in a learning process which ult
Dunn Drew A.
Koninklijke Philips Electronics , N.V.
Vodopia John
Yun Jurie
LandOfFree
X-ray examination apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with X-ray examination apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and X-ray examination apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3048296